Abstract
Snake-like cable-driven redundant robots (SCDRR) have great application prospects in narrow and complex environments, thus are being widely research in recent years. However, the effect of links length distribution on workspace is rarely studied. Meanwhile, the stiffness optimization of SCDRR is an important issue, due to its relatively poor stiffness performance compared with industrial robots. This paper first analyzes the relationship between workspace area, workspace volume and manipulability to illustrate the effect of links length distribution on workspace. Then stiffness optimization model with and without the variation of the Jacobian matrix can be established by statics and stiffness model. Lastly, simulations show that the optimization result between two models is not much different when cables tension are relatively low, while the simplify one has less computational complexity. The workspace analysis in this paper can provide guidance for SCDRR design. And the comparison of two proposed optimization model can provide a basis for the research of variable stiffness control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References`
Thuruthel, T.G., Ansari, Y., Falotico, E., Laschi, C.: Control strategies for soft robotic manipulators: a survey. Soft Rob. 5(2), 149–163 (2018). https://doi.org/10.1089/soro.2017.0007
Simaan, N.: Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3012–3017. IEEE (2005)
Kai, X., Simaan, N.: An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans. Rob. 24(3), 576–587 (2008). https://doi.org/10.1109/TRO.2008.924266
Kaouk, J.H., et al.: A novel robotic system for single-port urologic surgery: first clinical investigation. Eur. Urol. 66(6), 1033–1043 (2014). https://doi.org/10.1016/j.eururo.2014.06.039
Anscombe, R., et al.: Snake-arm robots: a new approach to aircraft assembly. SAE Technical Paper No. 2006-01-3141(2006)
Peng, J., Xu, W., Liu, T., Yuan, H., Liang, B.: End-effector pose and arm shape synchronous planning methods of a hyper-redundant manipulator for spacecraft repairing. Mech. Mach. Theory. 155, 1–25 (2021)
Liu, T., Mu, Z., Wang, H., Xu, W., Li, Y.: A cable-driven redundant spatial manipulator with improved stiffness and load capacity. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6628–6633. IEEE (2018)
Wang, Y., Yang, G., Yang, K., Zheng, T.: The kinematic analysis and stiffness optimization for an 8-DOF cable-driven manipulator. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 682–687. IEEE (2017)
Yeo, S.H., Yang, G., Lim, W.B.: Design and analysis of cable-driven manipulators with variable stiffness. Mech. Mach. Theory 69, 230–244 (2013). https://doi.org/10.1016/j.mechmachtheory.2013.06.005
Peng, J., Xu, W., Yang, T., Hu, Z., Liang, B.: Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot. Nonlinear Dyn. 101(1), 233–253 (2020). https://doi.org/10.1007/s11071-020-05764-7
Xu, W., Liu, T., Li, Y.: Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator. IEEE/ASME Trans. Mechatron. 23(4), 1693–1704 (2018). https://doi.org/10.1109/TMECH.2018.2842141
Chen, S.F., Kao, I., Hollerbach, J.H., Koditschek, D.E.: The conservative congruence transformation of stiffness control in robotic grasping and manipulation. In: Proceedings of the 9th International Symposium of Robotics Research, pp. 7–14 (1999)
Chen, S.-F., Kao, I.: Conservative congruence transformation for joint and Cartesian stiffness matrices of robotic hands and fingers. Int. J. Rob. Res. 19(9), 835–847 (2000). https://doi.org/10.1177/02783640022067201
Xu, D., Li, E., Liang, Z.: Kinematics and statics analysis of a novel cable-driven snake arm robot. In: 2017 Chinese Automation Congress (CAC), pp. 439–444. IEEE (2017)
Yuan, H., Zhang, W., Dai, Y., Xu, W.: Analytical and numerical methods for the stiffness modeling of cable-driven serpentinse manipulators. Mech. Mach. Theor. 156, 104179 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, H., Peng, J., Han, Y. (2021). Workspace Analysis and Stiffness Optimization of Snake-Like Cable-Driven Redundant Robots. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-89134-3_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89133-6
Online ISBN: 978-3-030-89134-3
eBook Packages: Computer ScienceComputer Science (R0)