Skip to main content

Inverse Kinematics of a 7-DOF Spray-Painting Robot with a Telescopic Forearm

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

  • 2941 Accesses

Abstract

Inverse kinematics is an important issue for redundant robot. This paper studies the inverse kinematics of a 7 degree of freedom (7-DOF) spray-painting robot with a telescopic forearm. The mapping relationship between the joint and the end-effector is studied and a method to find the solution of the inverse solution is proposed. The position of the end point of the painting gun are affected by five joints and the position of the two joints from the five joints are taken as independent variables. Except the two joints with their position taken as independent variables, the analytical solutions of other five joints are written as function of the two independent variables. An objective function that considers the joint limit is presented to optimize the two independent variables. The proposed method is compared with the direct Jacobian iteration method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, J., Gao, Y., Zhang, B., Wang, L.: Workspace and dynamic performance evaluation of the parallel manipulators in a spray-painting equipment. Robot. Comput. Integr. Manuf. 44, 199–207 (2017)

    Google Scholar 

  2. Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 26(5), 414–419 (2010)

    Google Scholar 

  3. Singh, G.K., Claassens, J.: An analytical solution for the inverse kinematics of a redundant 7DoF manipulator with link offsets. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010), pp. 2976–2982 (2010)

    Google Scholar 

  4. Berenson, D., Srinivasa, S.S., Ferguson, D., Collet, A., Kuffner, J.J.: Manipulation planning with workspace goal regions. In: ICRA: 2009 IEEE International Conference on Robotics and Automation, pp. 1–7, 1397–1403 (2009)

    Google Scholar 

  5. Crenganis, M., Tera, M., Biris, C., Girjob, C.: Dynamic analysis of a 7 DOF robot using fuzzy logic for inverse kinematics problem. In: 7th International Conference on Information Technology and Quantitative Management (ITQM 2019): Information Technology and Quantitative Management Based on Artificial Intelligence, vol. 162, pp. 298–306 (2019)

    Google Scholar 

  6. Faria, C., Ferreira, F., Erlhagen, W., Monteiro, S., Bicho, E.: Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance. Mech. Mach. Theor. 121, 317–334 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.10.025

    Article  Google Scholar 

  7. Dahm, P., Joublin, F.: Closed form solution for the inverse kinematics of a redundant robot arm. Comput. Aided Geom. Des. 163–171 (2016)

    Google Scholar 

  8. Moradi, H., Lee, S.: Joint limit analysis and elbow movement minimization for redundant manipulators using closed form method. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) Advances in Intelligent Computing, pp. 423–432. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11538356_44

    Chapter  Google Scholar 

  9. Wang, J., Li, Y., Zhao, X.: Inverse kinematics and control of a 7-DOF redundant manipulator based on the closed-loop algorithm. Int. J. Adv. Rob. Syst. 7(4), 1–9 (2010)

    Google Scholar 

  10. Gan, W.W., Pellegrino, S.: Numerical approach to the kinematic analysis of deployable structures forming a closed loop. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 220(7), 1045–1056 (2006)

    Article  Google Scholar 

  11. Kucuk, S., Bingul, Z.: The inverse kinematics solutions of fundamental robot manipulators with offset wrist. IEEE Int. Conf. Mechatron. (ICM) 2005, 197–202 (2005)

    Google Scholar 

  12. Zhao, J., Xu, T., Fang, Q., Xie, Y., Zhu, Y.: A synthetic inverse kinematic algorithm for 7-DOF redundant manipulator. In: Proceedings of 2018 IEEE International Conference on Real-Time Computing and Robotics (IEEE RCAR), pp. 112–117 (2018)

    Google Scholar 

  13. Dubey, R.V., Euler, J.A., Babcock, S.M.: An efficient gradient projection optimization scheme for a seven-degree-of-freedom redundant robot with spherical wrist. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation (CAT. No.88CH2555–1), pp. 1, 28–36 (1988)

    Google Scholar 

  14. Hu, K., Zhang, J., Dong, Y., Wu, D.: Inverse kinematic optimization for 7-DoF serial manipulators with joint limits. J. Tsinghua Univ. (Sci. Technol.) 60(12), 1007–1015 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51975321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Qiu, J., Wu, J., Wang, J. (2021). Inverse Kinematics of a 7-DOF Spray-Painting Robot with a Telescopic Forearm. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics