Abstract
Inverse kinematics is an important issue for redundant robot. This paper studies the inverse kinematics of a 7 degree of freedom (7-DOF) spray-painting robot with a telescopic forearm. The mapping relationship between the joint and the end-effector is studied and a method to find the solution of the inverse solution is proposed. The position of the end point of the painting gun are affected by five joints and the position of the two joints from the five joints are taken as independent variables. Except the two joints with their position taken as independent variables, the analytical solutions of other five joints are written as function of the two independent variables. An objective function that considers the joint limit is presented to optimize the two independent variables. The proposed method is compared with the direct Jacobian iteration method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wu, J., Gao, Y., Zhang, B., Wang, L.: Workspace and dynamic performance evaluation of the parallel manipulators in a spray-painting equipment. Robot. Comput. Integr. Manuf. 44, 199–207 (2017)
Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 26(5), 414–419 (2010)
Singh, G.K., Claassens, J.: An analytical solution for the inverse kinematics of a redundant 7DoF manipulator with link offsets. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010), pp. 2976–2982 (2010)
Berenson, D., Srinivasa, S.S., Ferguson, D., Collet, A., Kuffner, J.J.: Manipulation planning with workspace goal regions. In: ICRA: 2009 IEEE International Conference on Robotics and Automation, pp. 1–7, 1397–1403 (2009)
Crenganis, M., Tera, M., Biris, C., Girjob, C.: Dynamic analysis of a 7 DOF robot using fuzzy logic for inverse kinematics problem. In: 7th International Conference on Information Technology and Quantitative Management (ITQM 2019): Information Technology and Quantitative Management Based on Artificial Intelligence, vol. 162, pp. 298–306 (2019)
Faria, C., Ferreira, F., Erlhagen, W., Monteiro, S., Bicho, E.: Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance. Mech. Mach. Theor. 121, 317–334 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.10.025
Dahm, P., Joublin, F.: Closed form solution for the inverse kinematics of a redundant robot arm. Comput. Aided Geom. Des. 163–171 (2016)
Moradi, H., Lee, S.: Joint limit analysis and elbow movement minimization for redundant manipulators using closed form method. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) Advances in Intelligent Computing, pp. 423–432. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11538356_44
Wang, J., Li, Y., Zhao, X.: Inverse kinematics and control of a 7-DOF redundant manipulator based on the closed-loop algorithm. Int. J. Adv. Rob. Syst. 7(4), 1–9 (2010)
Gan, W.W., Pellegrino, S.: Numerical approach to the kinematic analysis of deployable structures forming a closed loop. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 220(7), 1045–1056 (2006)
Kucuk, S., Bingul, Z.: The inverse kinematics solutions of fundamental robot manipulators with offset wrist. IEEE Int. Conf. Mechatron. (ICM) 2005, 197–202 (2005)
Zhao, J., Xu, T., Fang, Q., Xie, Y., Zhu, Y.: A synthetic inverse kinematic algorithm for 7-DOF redundant manipulator. In: Proceedings of 2018 IEEE International Conference on Real-Time Computing and Robotics (IEEE RCAR), pp. 112–117 (2018)
Dubey, R.V., Euler, J.A., Babcock, S.M.: An efficient gradient projection optimization scheme for a seven-degree-of-freedom redundant robot with spherical wrist. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation (CAT. No.88CH2555–1), pp. 1, 28–36 (1988)
Hu, K., Zhang, J., Dong, Y., Wu, D.: Inverse kinematic optimization for 7-DoF serial manipulators with joint limits. J. Tsinghua Univ. (Sci. Technol.) 60(12), 1007–1015 (2020)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No. 51975321).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Qiu, J., Wu, J., Wang, J. (2021). Inverse Kinematics of a 7-DOF Spray-Painting Robot with a Telescopic Forearm. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_61
Download citation
DOI: https://doi.org/10.1007/978-3-030-89134-3_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89133-6
Online ISBN: 978-3-030-89134-3
eBook Packages: Computer ScienceComputer Science (R0)