Skip to main content

A New Method for Inferring Ground-Truth Labels and Malware Detector Effectiveness Metrics

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13005))

Included in the following conference series:

Abstract

In the context of malware detection, ground-truth labels of files are often difficult or costly to obtain; as a consequence, malware detector effectiveness metrics (e.g., false-positive and false-negative rates) are hard to measure. The unavailability of ground-truth labels also hinder the training of machine learning based malware detectors. These issues are often encountered by researchers and practitioners and force them to use various heuristics without justification. Therefore, seeking principled methods has become an important open problem. In this paper, we present a principled method for tackling the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Charlton, J., Du, P., Cho, J.H., Xu, S.: Measuring relative accuracy of malware detectors in the absence of ground truth. In: Proceedings IEEE MILCOM, pp. 450–455 (2018)

    Google Scholar 

  2. Chen, H., Cho, J., Xu, S.: Quantifying the security effectiveness of firewalls and dmzs. In: Proceedings HoTSoS 2018, pp. 9:1–9:11 (2018)

    Google Scholar 

  3. Chen, H., Cho, J., Xu, S.: Quantifying the security effectiveness of network diversity. In: Proceedings HoTSoS 2018, p. 24:1 (2018)

    Google Scholar 

  4. Cheng, Y., Deng, J., Li, J., DeLoach, S., Singhal, A., Ou, X.: Metrics of security. In: Cyber Defense and Situational Awareness, pp. 263–295 (2014)

    Google Scholar 

  5. Cho, J., Hurley, P., Xu, S.: Metrics and measurement of trustworthy systems. In: IEEE Military Communication Conference (MILCOM 2016) (2016)

    Google Scholar 

  6. Cho, J., Xu, S., Hurley, P., Mackay, M., Benjamin, T., Beaumont, M.: Stram: measuring the trustworthiness of computer-based systems. ACM Comput. Surv. 51(6), 128:1–128:47 (2019)

    Google Scholar 

  7. Du, P., Sun, Z., Chen, H., Cho, J.H., Xu, S.: Statistical estimation of malware detection metrics in the absence of ground truth. IEEE T-IFS 13(12), 2965–2980 (2018)

    Google Scholar 

  8. Homer, J., et al.: Aggregating vulnerability metrics in enterprise networks using attack graphs. J. Comput. Secur. 21(4), 561–597 (2013)

    Article  MathSciNet  Google Scholar 

  9. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Article  Google Scholar 

  10. Invernizzi, L., Benvenuti, S., Cova, M., Comparetti, P.M., Kruegel, C., Vigna, G.: Evilseed: a guided approach to finding malicious web pages. In: IEEE Symposium on Security and Privacy, pp. 428–442 (2012)

    Google Scholar 

  11. Johnson, C.R., Horn, R.A.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  12. Kantchelian, A., et al.: Better malware ground truth: techniques for weighting anti-virus vendor labels. In: Proceedings 2015 ACM Workshop on Artificial Intelligence and Security, pp. 45–56 (2015)

    Google Scholar 

  13. Kührer, M., Rossow, C., Holz, T.: Paint it black: evaluating the effectiveness of malware blacklists. In: Proceedings Research in Attacks, Intrusions and Defenses (RAID 2014), pp. 1–21 (2014)

    Google Scholar 

  14. Mireles, J., Ficke, E., Cho, J., Hurley, P., Xu, S.: Metrics towards measuring cyber agility. IEEE T-IFS 14(12), 3217–3232 (2019)

    Google Scholar 

  15. Mohaisen, A., Alrawi, O.: Av-meter: an evaluation of antivirus scans and labels. In: Proceedings DIMVA, pp. 112–131 (2014)

    Google Scholar 

  16. Morales, J., Xu, S., Sandhu, R.: Analyzing malware detection efficiency with multiple anti-malware programs. In: Proceedings CyberSecurity (2012)

    Google Scholar 

  17. Noel, S., Jajodia, S.: A suite of metrics for network attack graph analytics. In: Network Security Metrics, pp. 141–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4_7

    Chapter  Google Scholar 

  18. Pendleton, M., Garcia-Lebron, R., Cho, J., Xu, S.: A survey on systems security metrics. ACM Comput. Surv. 49(4), 62:1–62:35 (2016)

    Google Scholar 

  19. Perdisci, R., ManChon, U.: Vamo: Towards a fully automated malware clustering validity analysis. In: Proceedings. ACSAC, pp. 329–338 (2012)

    Google Scholar 

  20. Pritom, M., Schweitzer, K., Bateman, R., Xu, M., Xu, S.: Data-driven characterization and detection of COVID-19 themed malicious websites. In: IEEE ISI 2020 (2020)

    Google Scholar 

  21. Ramos, A., Lazar, M., Filho, R.H., Rodrigues, J.J.P.C.: Model-based quantitative network security metrics: a survey. IEEE Commun. Surv. Tutorials 19(4), 2704–2734 (2017)

    Article  Google Scholar 

  22. Wang, L., Jajodia, S., Singhal, A.: Network Security Metrics. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4

    Book  Google Scholar 

  23. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: K-zero day safety: a network security metric for measuring the risk of unknown vulnerabilities. IEEE TDSC 11(1), 30–44 (2014)

    Google Scholar 

  24. Xu, L., Zhan, Z., Xu, S., Ye, K.: Cross-layer detection of malicious websites. In: ACM CODASPY, pp. 141–152 (2013)

    Google Scholar 

  25. Xu, L., Zhan, Z., Xu, S., Ye, K.: An evasion and counter-evasion study in malicious websites detection. In: IEEE CNS, pp. 265–273 (2014)

    Google Scholar 

  26. Zhang, J., Durumeric, Z., Bailey, M., Liu, M., Karir, M.: On the mismanagement and maliciousness of networks. In: Proceedings NDSS 2014 (2014)

    Google Scholar 

  27. Zhang, M., Wang, L., Jajodia, S., Singhal, A., Albanese, M.: Network diversity: a security metric for evaluating the resilience of networks against zero-day attacks. IEEE Trans. Inf. Forensics Secur. 11(5), 1071–1086 (2016)

    Article  Google Scholar 

  28. Zhu, S., et al.: Measuring and modeling the label dynamics of online anti-malware engines. In: 29th USENIX Security Symposium, USENIX Security 2020, 12–14, August 2020, pp. 2361–2378 (2020)

    Google Scholar 

Download references

Acknowledgement

We thank the reviewers for their useful comments. This work was supported in part by NSF Grant #2122631 (#1814825) and by a Grant from the State of Colorado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhuai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charlton, J., Du, P., Xu, S. (2021). A New Method for Inferring Ground-Truth Labels and Malware Detector Effectiveness Metrics. In: Lu, W., Sun, K., Yung, M., Liu, F. (eds) Science of Cyber Security. SciSec 2021. Lecture Notes in Computer Science(), vol 13005. Springer, Cham. https://doi.org/10.1007/978-3-030-89137-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89137-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89136-7

  • Online ISBN: 978-3-030-89137-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics