Skip to main content

Simulation-Based Elicitation of Accuracy Requirements for the Environmental Perception of Autonomous Vehicles

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13036))

Included in the following conference series:

Abstract

Novel methods for safety validation of autonomous vehicles are needed in order to enable a successful release of self-driving cars to the public. Decomposition of safety validation is one promising strategy for replacing blunt test mileage conducted by real world drives and can be applied in multiple dimensions: shifting to a scenario-based testing process, assuring safety of individual subsystems as well as combining different validation methods. In this paper, we facilitate such a decomposed safety validation strategy by simulation-based elicitation of accuracy requirements for the environmental perception for a given planning function in a defined urban scenario. Our contribution is threefold: a methodology based on exploring perceptual inaccuracy spaces and identifying safety envelopes, perceptual error models to construct such inaccuracy spaces, and an exemplary application that utilizes the proposed methodology in a simulation-based test process. In a case study, we elicit quantitative perception requirements for a prototypical planning function, which has been deployed for real test drives in the city of Hamburg, Germany. We consider requirements regarding tracking and the position of an oncoming vehicle in a concrete scenario. Finally, we conclude our methodology to be useful for a first elicitation of quantifiable and measurable requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Failure Mode Effect Analysis.

  2. 2.

    Fault Tree Analysis.

  3. 3.

    In this work we follow the definition of accuracy given by ISO 5725-1 [12].

  4. 4.

    Volkswagen AG, 04.2019 www.volkswagenag.com/en/news/stories/2019/04/laser- radar-ultrasound-autonomous-driving-in-hamburg.html.

  5. 5.

    Metric refers to a variable defined on either an interval or ratio scale.

  6. 6.

    Categorical refers to a variable defined on either a nominal or ordinal scale.

References

  1. SJ3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (2018)

    Google Scholar 

  2. Bohrer, B., Tan, Y.K., Mitsch, S., Sogokon, A., Platzer, A.: A formal safety net for waypoint-following in ground robots. IEEE RA-L 4(3), 2910–2917 (2019)

    Google Scholar 

  3. Brahmi, M., Siedersberger, K.H., Siegel, A., Maurer, M.: Reference systems for environmental perception: requirements, validation and metric-based evaluation. In: 6. Tagung Fahrerassistenzsysteme (2013)

    Google Scholar 

  4. Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.: Verifying the safety of a flight-critical system. In: FM: Formal Methods (2015)

    Google Scholar 

  5. Bussler, A., Hartjen, L., Philipp, R., Schuldt, F.: Application of evolutionary algorithms and criticality metrics for the verification and validation of automated driving systems at urban intersections. In: IEEE IV Symposium (2020)

    Google Scholar 

  6. Chechik, M., Salay, R., Viger, T., Kokaly, S., Rahimi, M.: Software assurance in an uncertain world. In: Fundamental Approaches to Software Engineering (2019)

    Google Scholar 

  7. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems with machine learning components. J. Autom. Reason. 63, 1031–1053 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eiras, F., Lahijanian, M., Kwiatkowska, M.: Correct-by-construction advanced driver assistance systems based on a cognitive architecture. In: IEEE CAVS Symposium (2019)

    Google Scholar 

  9. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal analysis and redesign of a neural network-based aircraft taxiing system with VerifAI. In: Computer Aided Verification (2020)

    Google Scholar 

  10. Guissouma, H., Leiner, S., Sax, E.: Towards design and verification of evolving cyber physical systems using contract-based methodology. In: IEEE ISSE (2019)

    Google Scholar 

  11. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic properties in model-based design for cyber-physical systems. In: STTT, vol. 20 (2017)

    Google Scholar 

  12. ISO 5725–1:1994: Accuracy (trueness and precision) of measurement methods and results - part 1: General principles and definitions. Standard (1994)

    Google Scholar 

  13. ISO/DIS 21448: Road vehicles - Safety of the intended functionality. Standard, International Organization for Standardization (ISO), Geneva, Switzerland (2021)

    Google Scholar 

  14. Jeannin, J.B., et al.: A formally verified hybrid system for the next-generation airborne collision avoidance system. In: TACAS (2015)

    Google Scholar 

  15. Jin, X., Donze, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. In: IEEE TCAD, vol. 34 (2015)

    Google Scholar 

  16. Julian, K.D., Kochenderfer, M.J.: Guaranteeing safety for neural network-based aircraft collision avoidance systems. In: IEEE DASC (2019)

    Google Scholar 

  17. Klamann, B., Lippert, M., Amersbach, C., Winner, H.: Defining pass-/fail-criteria for particular tests of automated driving functions. In: IEEE ITSC. IEEE, October 2019. https://doi.org/10.1109/ITSC.2019.8917483

  18. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification and verification of autonomous robotic systems. ACM CSUR 52(5), 1–41 (2019)

    Article  Google Scholar 

  19. Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.): Autonomes Fahren (2015)

    Google Scholar 

  20. Moradi, M., Oakes, B.J., Saraoglu, M., Morozov, A., Janschek, K., Denil, J.: Exploring fault parameter space using reinforcement learning-based fault injection. In: IEEE/IFIP DSN-W (2020)

    Google Scholar 

  21. Nilsson, P., et al.: Correct-by-construction adaptive cruise control: two approaches. IEEE Trans. Control Syst. Technol. 24(4), 1294–1307 (2016)

    Article  Google Scholar 

  22. Philion, J., Kar, A., Fidler, S.: Learning to evaluate perception models using planner-centric metrics. In: Proceedings of the IEEE/CVF CVPR (2020)

    Google Scholar 

  23. Philipp, R., Schuldt, F., Howar, F.: Functional decomposition of automated driving systems for the classification and evaluation of perceptual threats. 13. Uni-DAS e.V. Workshop Fahrerassistenz und automatisiertes Fahren (2020)

    Google Scholar 

  24. Piazzoni, A., Cherian, J., Slavik, M., Dauwels, J.: Modeling perception errors towards robust decision making in autonomous vehicles. In: IJCAI (2020)

    Google Scholar 

  25. Piazzoni, A., Cherian, J., Slavik, M., Dauwels, J.: Modeling sensing and perception errors towards robust decision making in autonomous vehicles (2020). https://arxiv.org/abs/2001.11695

  26. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming dr. frankenstein: contract-based design for cyber-physical systems. Eur. J. Control 18(3), 217–238 (2012)

    Google Scholar 

  27. Schönemann, V., et al.: Fault tree-based derivation of safety requirements for automated driving on the example of cooperative valet parking. In: 26th International Conference on the Enhanced Safety of Vehicles (ESV) (2019)

    Google Scholar 

  28. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-driving cars (2017). https://arxiv.org/abs/1708.06374

  29. Stahl, T., Diermeyer, F.: Online verification enabling approval of driving functions–implementation for a planner of an autonomous race vehicle. IEEE Open J. Intell. Transp. Syst. 2, 97–110 (2021)

    Article  Google Scholar 

  30. Stahl, T., Eicher, M., Betz, J., Diermeyer, F.: Online verification concept for autonomous vehicles – illustrative study for a trajectory planning module (2020)

    Google Scholar 

  31. Stellet, J.E., Woehrle, M., Brade, T., Poddey, A., Branz, W.: Validation of automated driving - a structured analysis and survey of approaches. In: 13. Uni-DAS e.V. Workshop Fahrerassistenz und automatisiertes Fahren (2020)

    Google Scholar 

  32. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the verification of hybrid systems. Proc. IEEE 91(7), 986–1001 (2003)

    Article  Google Scholar 

  33. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In: IEEE IV Symposium (2018)

    Google Scholar 

  34. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Trans. Intell. Veh. 5, 265–280 (2020)

    Article  Google Scholar 

  35. UNECE: Proposal for a new UN Regulation on uniform provisions concerning the approval of vehicles with regards to Automated Lane Keeping System. Tech. rep. (2020). https://undocs.org/ECE/TRANS/WP.29/2020/81

  36. Volk, G., Gamerdinger, J., von Bernuth, A., Bringmann, O.: A comprehensive safety metric to evaluate perception in autonomous systems. In: IEEE ITSC (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Philipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Philipp, R., Qian, H., Hartjen, L., Schuldt, F., Howar, F. (2021). Simulation-Based Elicitation of Accuracy Requirements for the Environmental Perception of Autonomous Vehicles. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. ISoLA 2021. Lecture Notes in Computer Science(), vol 13036. Springer, Cham. https://doi.org/10.1007/978-3-030-89159-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89159-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89158-9

  • Online ISBN: 978-3-030-89159-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics