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Abstract. Maintaining an ad hoc network infrastructure to cover multi-
ple ground-based users can be achieved by autonomous groups of hydro-
carbon powered medium-altitude, long-endurance (MALE) unmanned
aerial vehicles (UAVs). This can be seen as an optimisation problem
to maximise the number of users supported by a quality network while
making efficient use of the available power. We present an architecture
that combines genetic algorithms with a network simulator to evolve
flying solutions for groups of UAVs. Results indicate that our system
generates physical network topologies that are usable and offer consis-
tent network quality. It offers a higher goodput than the non-network-
aware equivalent when covering the communication demands of multiple
ground-based users. Most importantly, the proposed architecture flies
the UAVs at lower altitudes making sure that downstream links remain
active throughout the duration of the mission.

Keywords: Genetic Algorithms · Wireless Communication · Unmanned
Aerial Vehicles · Networks.

1 Introduction

It is broadly recognised that area coverage for communication services is a
promising application domain for cooperative UAVs [1, 2]. Genetic algorithms
(GAs) offer significant advances with most of the research concentrated on coor-
dination, route finding, path planning and constraint management in multi-UAV
systems [3–5]. In most of these contributions, the communication network be-
tween the UAVs is assumed. Exemplar works include Carruthers et al., [6] where
the authors proposed a GA-based collision-aware coordination system for UAV
missions related to surveillance and searching in unknown areas, with the as-
sumption that the communications are constantly available.

Very few researchers have addressed the quality of network coverage for large-
scale missions offered by groups of UAVs. Noticeable examples include Agogino
et al., [7] who optimised power levels and antenna orientations using GAs to
maximise area coverage for ground-based users.

In this paper, we address the problem of autonomous position coordination
for communication UAVs using GAs, by providing and maintaining an efficient



2 A. Giagkos et al.

airborne network infrastructure capable of supporting the communication needs
of users on the ground. Our design includes a network-aware evaluation method
for evolving solutions, which incorporates communication links’ validation via a
network simulator that implements a complete TCP/IP protocol stack. Thus,
two objectives are addressed: i) to maximise the number of users being covered
based on the available power and ii) to maximise the number of active UAV-
to-UAVand UAV-to-users links being provided.

Section 2 introduces the problem with a scenario. The design of the GAs
we employ is found in Section 3, and in Section 4, we discuss the system’s ar-
chitecture along with the network-aware evaluation method. The experimental
methodology and results are found in Sections 5 and 6 respectively. Final re-
marks and future work are included in Section 7.

2 Problem Description

MALE fixed-wing UAVs are equipped with two radio antennae; i) one
isotropic for the UAV-to-UAV transmissions, and ii) one horn-shaped able
to transfer data to the ground-based users. They have limited power for
the communication, denoted as Pmax with which they have to provide
as many communication links as possible. All users, including the UAVs,
are equipped with a Global Positioning System (GPS) and periodically
broadcast information about their current positions.

Communication links are treated independently. A transmission is considered
successful when a UAV’s transmitter can feed its antenna with enough power to
satisfy the quality requirements. A link is considered of good quality if the ratio
of the energy per bit of information Eb to the thermal noise in 1 Hz bandwidth
N0 is maintained. Eq. 1 expresses the transmitting power Pt required to cover
a user at slant range d, as shown in Fig. 1a. For further details on computing
slant range values, the reader is encouraged to consult Giagkos et al. [8].
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The higher the UAV flies, the greater its altitude h, the wider its conical
footprint on the ground, and thus the greater the area covered. Similarly, the
longer the slant range d between the transmitter and the receiver, the higher
the signal power required to support the communication. The slant angle α to
a user is calculated by applying spherical trigonometry using the available GPS
data that each network user is expected to broadcast at regular intervals. A user
needs to lie within the footprint of at least one UAV to be part of the network.

Noise related to obstacles is represented by the use of the elevation angle
γ. A link is achieved when γ ≥ ω, with ω = 10◦. Subsequently, if γ < ω then
the factor p in Eq. 1 is set to 0, indicating that no power is dedicated to that
specific link, and thus the user is not covered. The link is ultimately considered
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(a) Illustrating parameters to calculate
slant range d and factor p.
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(b) Three segments of different dura-
tion δhi and bank angles βi between
points A and B.

Fig. 1: (a) A UAV’s canonical footprint; (b) The Dubins path flying trajectory.

achievable if and only if Pt is less than or equal to the remaining Pmax, the
maximum power available for communications each cycle.

3 Power-Aware Genetic Algorithms

In our previous work, we describe how genetic algorithms can cooperatively
relocate UAVs to maximise coverage [9]. Flying trajectories are described by
Dubins paths [10] consisting of 3 segments as depicted in Fig. 1b. We encode
a UAV’s trajectory as a 8-gene chromosome; three pairs of bank angle βi and
associated duration δti for each segment, with i ∈ {1, 2, 3} and

∑3
n=1(δti) equal

to the duration a complete trajectory. The final two genes are related to vertical
flying with a binary b indicating whether the altitude change (δh) will be applied
or the UAV will keep flying at constant altitude.

A single-point cross-over and a mutation operator are designed to evolve
groups of N number of flying trajectories for N number of UAVs. A population
of M × N are initiated, with M = 100 number of groups. The best previous
group is retained unchanged (i.e., elite), whereas all others are combined to form
new offspring. Selection is performed using roulette wheel. Every two randomly
selected chromosomes among chosen groups are reproduced with a probability
of 0.3. Each offspring gene is mutated; we apply a random Gaussian offset (mean
0.0, stdev. 0.1) to all real-valued genes, whereas the binary one is just flipped.
The mutation rate is 0.05. Finally, GAs run for 200 generations or until the
allowed computation time has elapsed, with M − 1 trajectories created at each
generation. The time criterion is set to the time necessary to complete the default
built-in circle manoeuvre when no solution is available.

The power-aware GAs utilise an evaluation method that measures the fitness
of each group collectively. Given that the key objective is to maximise the number
of supported users when limited power is available, the fitness score for a solution

is calculated by f =
∑|U|
n=1 |Cn|
|G| , with U the set of all UAVs, and Cn the packing

array of the nth UAV and G the set of all users on the ground.
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Calculating the packing arrays for each UAV plays an important role in the
efficiency of the searching algorithm. The packing algorithm that assigns users
to appropriate UAVs was initially introduced in Giagkos et al. [9] and thus, its
details are omitted. Packing favours those users that are low-maintenance (closer
to the centre of the footprint) and, in turn, maximises the total coverage.

4 Network-Aware Genetic Algorithms

We extend our work to form new network-aware GAs that not only consider
link budgets but also evaluate each solution by measuring its network topology
qualities. We integrate the system with NS3, a discrete-event network simula-
tor capable of providing realistic network phenomena and monitoring network
performance metrics [11]. In this section, we describe the integration before doc-
umenting the internal mechanisms of the proposed network-aware GAs.

UAV-1 running GAs

UU: 192.168.0.1

: 10.0.1.1

UAV-3

UU: 192.168.0.3

: 10.0.3.1

UAV-2

UU: 192.168.0.2

: 10.0.2.1

UAV-4

UU: 192.168.0.4

: 10.0.4.1

User 5

10.0.4.6

User 42

10.0.3.43

UG UG

UG
UG

Fig. 2: Illustration of one NS3 network topology depicting a group of 4 UAVs.
Each UAV gateway relays packets to and from its own footprint’s network.

4.1 Integration with a Network Simulator

NS3’s codebase is developed to allow the exchange of information between the
GAs and the network simulator, namely the predicted positions of all users at
the beginning of the next computational step, and the packing arrays. The built-
in functionality to convert geographic to Cartesian coordinates is used, mapping
the physical positions of all communicating users to a physical network topology.

All of the users’ network interfaces are configured with respect to the pack-
ing information associated with each UAV, as seen in Fig. 2. Isotropic anten-
nae’s interfaces are given the address 192.168.0.Un, with Un being the UAV’s
unique identifier (UID). Similarly, the horn-shaped antennae’s addressed are set
to 10.0.Un.1 to facilitate footprint networks. Depending on which packing array
it belongs to, each user receives an address 10.0.Un.Gj , with Gj being its UID+1
and Un the UID of the supporting UAV. For example, user 42 in Fig. 2 uses the
gateway address 10.0.3.1 to communicate with the rest of the network.
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NS3’s wireless PHY and MAC implementations are based on the IEEE 802.11
standards. We increase the request to send / clear to send (RTS/CTS) time-
out thresholds, overcoming the failed distributed coordination function pitfall in
long-range transmissions. The gain of the horn-shaped antennae transmitters is
set according to the manufacturer, i.e., calculated by Gt = 2η

1−cos( θ2 )
, with θ =

125◦ corresponding to the half-power beam-width angle of the antenna and η =
0.95, the efficiency of its transmission. For the isotropic antennae, gain Gt = 1.

«subsystem» Master UAV 

 

Flying Controller
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Network 
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Fig. 3: Network-aware GAs architecture: the master UAV’s internal components.

4.2 Network Topology Evaluation Model

The core differences between the power-aware and the network-aware GAs are
the integration of the network simulator and its use to evaluate individual so-
lutions by the latter GAs. The new objective is to maximise the fitness of each
group of trajectories with respect to whether their resulting network topolo-
gies are able to maintain communication.

Fig. 3 depicts the internal components of the subsystem installed on the
master UAV, which generates and distributes solutions to the rest of the group.
The component responsible for the communication sends and receives data us-
ing the connected interfaces, including the GPS broadcaster. Data is ported
to the flying controller, the component in charge of preparing the next steer-
ing parameters (i.e., bank angle and altitude changes). When no trajectory is
available or incomplete, 3 the controller initiates the GAs, feeding it at the
same time with position related data.

Although the network-aware GAs share both encoding/decoding scheme
and genetic operators with the power-aware GAs, the network-aware evalu-
ation method also comprises short network trials (duration of 320 simulated
seconds), designed to check the validity of all links of a solution’s net-
work topology. Link validation is a two-phase process and is performed
by using a bespoke network protocol.

For UAV-to-UAV links, the master UAV broadcasts one discovery request
packet per second to 192.168.0.255 containing a fresh sequence number (SeqNo).
All receiving UAVs save the packet’s SeqNo, update their routing tables and

3 While the GAs search for solutions, the default UAV manoeuvre is to cruise in circles.
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broadcast the request further before acknowledging it by sending a unicast ACK
packet to the master. Received broadcast packets that contain the same SeqNo
are dropped, while unicast ACKs are forwarded using the routing tables. At the
end of the trial, the UAV-to-UAV link validation metric is calculated as:

Nuu =
pktack

pktreq × (|U | − 1)
(2)

where pktack is the number ACK packets received and pktreq the discovery re-
quests sent to a topology of |U | UAVs during the course of the trial.

Subsequently, UAV-to-ground links are checked by making use of the foot-
print networks. Every time a UAV acknowledges a discovery request, it broad-
casts a request packet to its own network (10.0.Un.255) with the same SeqNo.
Any listening users acknowledge the request by sending ACK unicast packets.
At every t of the trial, a UAV-to-ground link validation metric N t

ug is given by:

N t
ug =

|U |∑
n=1

|Ct,ackn |, with Ct,ackn ⊆ Ctn (3)

where Ctn is the packing array for Un at t and Ct,ackn the subset of users from
that array that have acknowledged support by Un. Considering the whole du-
ration T of the trial, Nug is given by:

Nug =

∑T
t=1N

t
ug∑T

t=1 |Ct|
, with Ct =

|U |⋃
n=1

Ctn (4)

with Ct the set of packed users at time t. Having calculated both Nuu
and Nug, the fitness score for the evaluation of a group of |U | fly-
ing trajectories is calculated as:

f = w1 ×
∑|U |
n=1 |Cn|
|G|

+ w2 ×Nuu + w3 ×Nug (5)

with w1, w2 and w3 equally set to 0.33 for even contribution. Note that Cn of
each UAV is not expected to change significantly between every t and t + 1.
Eq. 5 is designed to consider the packing algorithm that regulates the link bud-
get, but also to examine whether the resulting network topology consists of
active links for a sufficient period of time.

The fittest solution is decoded and returned to both the flying controller
and the communication components, as shown in Fig. 3. At every next trial
all routing tables are erased. Note that for the rest of the UAVs, the solution
generation component is omitted from the architecture.

5 Experimental Methodology

To compare the power-aware with network-aware GAs groups of 4 UAVs are
autonomously controlled to support 50 users uniformly distributed within a 100
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km2 terrain for 1 hour. All users follow a random waypoint mobility model,
with varying speeds (5–60 mph) and pausing times of 120 seconds. The UAVs’
speed is 75 knots and flying is constrained by a maximum bank angle of 48◦

and altitude range of 150 m to 6 km. Other parameters related to link bud-
get are: Pmax = 50 Watts, θ = 125◦, η = 0.95, Rb = 2 Mbit/s, Eb/N0 = 10
dB, frequency f = 5 GHz and ω = 10◦.

The Ad-hoc On-demand Distance Vector (AODV) protocol [12] is used
for routing. AODV offers a state-of-the-art reactive mechanism for dis-
covering paths between sources and destinations. To ensure that users
can only communicate within the assigned footprint, AODV is disabled
outside their 10.0.Un.0 networks.

Algorithm 1 Selecting source and destination pairs for communication sessions.

Require: acking arrays Cn of all n ∈ U and their union C
Ensure: L, a set of source and destination users’ pairs
1: L← ∅
2: Sused ← ∅, Dused ← ∅ . sets of used sources and destinations
3: for each n ∈ U do
4: for each n′ ∈ U do
5: if n == n′ then
6: continue
7: Sleft ← Sused 4 Cn . calculate the symmetric difference of two sets
8: Dleft ← Dused 4 C′

n
9: if |Sleft| − 1 < 0 or |Dleft| − 1 < 0 then

10: continue

11: Sused
+← Sleft(0) . append first element of the set

12: Dused
+← Dleft(0)

13: L
+← < Sleft(0), Dleft(0) > . append tuple of source and destination

14: return L

A |U |(|U | − 1) number of communication sessions are used in each experi-
ment, with the selection of sources and destinations being performed using Al-
gorithm 1. This approach ensures that the airborne backbone is fully utilised
by the users on the ground. Constant Bit Rate (CBR) traffic generators are
used for the communications between selected pairs, with sources transmitting
512-byte UDP datagrams at a rate of 1 Mbps.

Three performance metrics are used for the comparison of the two systems.
Namely, i) coverage as the total number of supported users calculated by the
packing algorithm, ii) goodput as the overall CBR throughput of the communi-
cation sessions excluding any protocol overhead bytes, and iii) altitude changes
as the mean to examine the vertical activity of the group. The metrics highlight
coverage capabilities with respect to both the number of users able to participate
in the provided networks and the latter’s efficiency in supporting communication
services. Also, monitoring altitudes is important because it affects the footprint
sizes and the slant range distances. As such, it offers useful insights about flying,
revealing any emergent specialisation strategy.

Due to the stochastic nature of both systems, we repeat the experiments 30
times using random seeds and aggregate the results.
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Fig. 4: Coverage results by power-aware and network-aware GAs.

6 Results

Fig. 4 shows coverage for both systems. Considering link validation causes a
reduced number of supported users for the network-aware GAs. This is an ex-
pected result, the magnitude of which highlights the importance of considering
network-related qualities. We observe that the network-aware system reaches a
plateau while the power-aware exploits several windows of opportunity to im-
prove coverage during the flight. This is due to the less conservative flying of
the power-aware GAs, restricted only by the Pmax values. This is justified by
the altitude changes depicted in Fig. 6, where 3 out of 4 UAVs are found to
almost reach the maximum altitude of 6 km.
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(a) Power-aware GAs.
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(b) Network-aware GAs.

Fig. 5: (a) Goodput results for both systems.

In practice, the network topologies generated by the two systems differ sig-
nificantly in performance. Fig. 5 shows the goodput of the multiple CBR traffic
generators. The network-aware GAs provide a usable and consistent infrastruc-
ture, whereas the links in the power-aware system gradually decline due to the
lack of real network awareness of the power-aware GAs. For the latter, the dis-
tances between UAVs and their altitudes cause links to fail. Closely looking at
the traffic data, we observe that communication is only possible for a single
pair of users at the end of the experiment.
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Altitude changes caused by the network-aware GAs are found to be less fre-
quent, as shown in Fig. 7. All UAVs fly level (approx. 4 km), ensuring that down-
stream links remain active. Specialisation in flying emerges less frequently than
by the power-aware GAs, as activity in the vertical axis is significantly lower.
Although the power-aware GAs seemingly put more effort in increasing coverage
by changing their vertical formation, the resulting physical topologies are not
efficient throughout the mission, mainly due to the internal mechanisms of the
underlying network protocols combined with long-range transmissions. This is
addressed by the network-aware GAs using the integrated evaluation method.
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Fig. 6: Altitude in metres (y-axes) of 4 UAVs (x-axes) by power-aware GAs.
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Fig. 7: Altitude in metres (y-axes) of 4 UAVs (x-axes) by network-aware GAs.

7 Conclusions

We presented a network-aware coordination system for MALE UAVs, which
employs GAs to evolve flying solutions that result in effective physical topol-
ogy networks. We discussed the integration with NS3 and compared the sys-
tem’s performance with a power-aware alternative that is purely based on link
budget calculations. The integrated design offers a usable, consistent airborne
infrastructure to support multiple users’ communication demands. Consider-
ing the network-aware objective in the evaluation mechanism, via NS3, en-
sures that downstream links remain active throughout the mission and offer
higher goodput than the power-aware GAs.

We deem the examination of the network-aware GAs under various scenarios
as important future work to identify potential scalability issues. Consequently,
we will investigate improvements to the evaluation method, such as considering
application-related traffic to improve the performance of the overall network.
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