Abstract
In this work, we present a comparative analysis of the trajectories estimated from various Simultaneous Localization and Mapping (SLAM) systems in a simulation environment for vineyards. Vineyard environment is challenging for SLAM methods, due to visual appearance changes over time, uneven terrain, and repeated visual patterns. For this reason, we created a simulation environment specifically for vineyards to help studying SLAM systems in such a challenging environment. We evaluated the following SLAM systems: LIO-SAM, StaticMapping, ORB-SLAM2, and RTAB-MAP in four different scenarios. The mobile robot used in this study equipped with 2D and 3D lidars, IMU, and RGB-D camera (Kinect v2). The results show good and encouraging performance of RTAB-MAP in such an environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
wiki.ros.org/rtabmap_ros.
- 3.
- 4.
Field: youtu.be/L9ORZNyWdT0. Uneven terrain: youtu.be/L9ORZNyWdT0.
- 5.
References
Nørremark, M., Griepentrog, H., Nielsen, J., Søgaard, H.: The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosys. Eng. 101(4), 396–410 (2008)
Imperoli, M., Potena, C., Nardi, D., Grisetti, G., Pretto, A.: An effective multi-cue positioning system for agricultural robotics. IEEE Robot. Autom. Lett. 3(4), 3685–3692 (2018)
Aguiar, A.S., dos Santos, F.N., Cunha, J.B., Sobreira, H., Sousa, A.J.: Localization and mapping for robots in agriculture and forestry: a survey. Robotics 9(4), 97 (2020)
Labbé, M., Michaud, F.: RTAB-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 36(2), 416–446 (2019)
Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Daniela, R.: LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5135–5142. IEEE (2020)
Liu, E.: Atinfinity: Edwardliuyc/staticmapping: Release for DOI, May 2021
Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)
Filipenko, M., Afanasyev, I.: Comparison of various SLAM systems for mobile robot in an indoor environment. In: 2018 International Conference on Intelligent Systems (IS). IEEE, September 2018
Yagfarov, R., Ivanou, M., Afanasyev, I.: Map comparison of lidar-based 2d SLAM algorithms using precise ground truth. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, November 2018
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, June 2012
Cheein, F.A., Steiner, G., Paina, G.P., Carelli, R.: Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Comput. Electron. Agric. 78(2), 195–207 (2011)
Comelli, R., Pire, T., Kofman, E.: Evaluation of visual slam algorithms on agricultural dataset, September 2019
Pire, T., Mujica, M., Civera, J., Kofman, E.: The Rosario dataset: multisensor data for localization and mapping in agricultural environments. Int. J. Robot. Res. 38(6), 633–641 (2019)
Capua, F.R., Sansoni, S., Moreyra, M.L.: Comparative analysis of visual-SLAM algorithms applied to fruit environments. In: 2018 Argentine Conference on Automatic Control (AADECA). IEEE, November 2018
Altuntas, N., Uslu, E., Cakmak, F., Amasyali, M.F., Yavuz, S.: Comparison of 3-dimensional SLAM systems: RTAB-map vs. kintinuous. In: 2017 International Conference on Computer Science and Engineering (UBMK). IEEE, October 2017
Galvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)
He, L., Wang, X., Zhang, H.: M2dp: a novel 3D point cloud descriptor and its application in loop closure detection. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, October 2016
Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F.: iSAM2: incremental smoothing and mapping with fluid relinearization and incremental variable reordering. In: 2011 IEEE International Conference on Robotics and Automation. IEEE, May 2011
Prokhorov, D., Zhukov, D., Barinova, O., Anton, K., Vorontsova, A.: Measuring robustness of visual SLAM. In: 2019 16th International Conference on Machine Vision Applications (MVA). IEEE, May 2019
Acknowledgement
This work has been supported by the European Commission as part of H2020 under grant number 871704 (BACCHUS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hroob, I., Polvara, R., Molina, S., Cielniak, G., Hanheide, M. (2021). Benchmark of Visual and 3D Lidar SLAM Systems in Simulation Environment for Vineyards. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds) Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science(), vol 13054. Springer, Cham. https://doi.org/10.1007/978-3-030-89177-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-89177-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89176-3
Online ISBN: 978-3-030-89177-0
eBook Packages: Computer ScienceComputer Science (R0)