Skip to main content

Tactile Dynamic Behaviour Prediction Based on Robot Action

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13054))

Included in the following conference series:

Abstract

Tactile sensing provides essential information about the state of the world for the robotic system to perform a successful and robust manipulation task. Integrating and exploiting tactile sensation enables the robotic systems to perform wider variety of manipulation tasks in unstructured environments relative to pure vision based systems. While slip detection and grip force control have been the focus of many research works, investigation of tactile dynamic behaviour based on robot actions is not yet sufficiently explored. This analysis can provide a tactile plant which can be used for both control methods and slip prediction using tactile signals. In this letter, we present a data driven approach to find an efficient tactile dynamic model with different tactile data representations. Having evaluated the performance of the trained models, it is shown that the tactile action conditional behaviour can be predicted in a sufficiently long time horizon in future for doing robot motion control.

Supported Cancer Research UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tian, S., et al.: Manipulation by feel: touch-based control with deep predictive models. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 818–824. IEEE (2019)

    Google Scholar 

  2. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Article  Google Scholar 

  3. Yousef, H., Boukallel, M., Althoefer, K.: Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens. Actuat. A: Phys. 167(2), 171–187 (2011)

    Article  Google Scholar 

  4. Romeo, R.A., Zollo, L.: Methods and sensors for slip detection in robotics: a survey. IEEE Access 8, 73027–73050 (2020)

    Article  Google Scholar 

  5. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing—from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2009)

    Article  Google Scholar 

  6. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. arXiv preprint arXiv:1605.07157 (2016)

  7. Zhou, X., Zhang, Z., Zhu, X., Liu, H., Liang, B.: Learning to predict friction and classify contact states by tactile sensor. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), pp. 1243–1248. IEEE (2020)

    Google Scholar 

  8. Yamaguchi, A., Atkeson, C.G.: Recent progress in tactile sensing and sensors for robotic manipulation: can we turn tactile sensing into vision? Adv. Robot. 33(14), 661–673 (2019)

    Article  Google Scholar 

  9. Yi, Z., Zhang, Y., Peters, J.: Biomimetic tactile sensors and signal processing with spike trains: a review. Sens. Actuat. A: Phys. 269, 41–52 (2018)

    Article  Google Scholar 

  10. Saen, M., Ito, K., Osada, K.: Action-intention-based grasp control with fine finger-force adjustment using combined optical-mechanical tactile sensor. IEEE Sens. J. 14(11), 4026–4033 (2014)

    Article  Google Scholar 

  11. Jamali, N., Sammut, C.: Slip prediction using hidden markov models: Multidimensional sensor data to symbolic temporal pattern learning. In: 2012 IEEE International Conference on Robotics and Automation, pp. 215–222. IEEE (2012)

    Google Scholar 

  12. Hogan, F.R., Ballester, J., Dong, S., Rodriguez, A.: Tactile dexterity: manipulation primitives with tactile feedback. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 8863–8869. IEEE (2020)

    Google Scholar 

  13. Chen, W., Khamis, H., Birznieks, I., Lepora, N.F., Redmond, S.J.: Tactile sensors for friction estimation and incipient slip detection—toward dexterous robotic manipulation: a review. IEEE Sens. J. 18(22), 9049–9064 (2018)

    Article  Google Scholar 

  14. Takahashi, K., Tan, J.: Deep visuo-tactile learning: estimation of tactile properties from images. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8951–8957. IEEE (2019)

    Google Scholar 

  15. Luo, S., Yuan, W., Adelson, E., Cohn, A.G., Fuentes, R.: ViTac: feature sharing between vision and tactile sensing for cloth texture recognition. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2722–2727. IEEE (2018)

    Google Scholar 

  16. Murali, A., Li, Y., Gandhi, D., Gupta, A.: Learning to grasp without seeing. In: Xiao, J., Kröger, T., Khatib, O. (eds.) ISER 2018. SPAR, vol. 11, pp. 375–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33950-0_33

    Chapter  Google Scholar 

  17. Lee, M.A., et al.: Making sense of vision and touch: self-supervised learning of multimodal representations for contact-rich tasks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8943–8950. IEEE (2019)

    Google Scholar 

  18. Zapata-Impata, B.S., Gil, P., Torres, F.: Learning spatio temporal tactile features with a ConvLSTM for the direction of slip detection. Sensors 19(3), 523 (2019)

    Article  Google Scholar 

  19. Sutanto, G., et al.: Learning latent space dynamics for tactile servoing. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3622–3628. IEEE (2019)

    Google Scholar 

  20. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ng, A., et al.: Sparse autoencoder. CS294A Lect. Notes 72(2011), 1–19 (2011)

    Google Scholar 

  22. Konstantinova, J., Cotugno, G., Stilli, A., Noh, Y., Althoefer, K.: Object classification using hybrid fiber optical force, proximity sensor. In: 2017 IEEE SENSORS, pp. 1–3. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyanoush Nazari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nazari, K., Mandill, W., Hanheide, M., Esfahani, A.G. (2021). Tactile Dynamic Behaviour Prediction Based on Robot Action. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds) Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science(), vol 13054. Springer, Cham. https://doi.org/10.1007/978-3-030-89177-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89177-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89176-3

  • Online ISBN: 978-3-030-89177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics