Skip to main content

EtherCAT Implementation of a Variable-Stiffness Tendon Drive with Non-back-Drivable Worm-Gear Motor Actuation

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13054))

Included in the following conference series:

Abstract

Here we present the design for a compliant actuator than makes use of agonistic-antagonistic tendons. Its novelty lies in its use of worm-gear motor drive and industrial EtherCAT control. We first describe a test rig to investigate variable-stiffness tendon drive for a single link and the construction of a corresponding EtherCAT controller. The tendon drive was based on the shoulder joint in the GummiArm and made use of tendons that exhibit a non-linear extension characteristic, so co-contraction increases joint stiffness. To ensures power was only needed when the arm is moving, low-cost worm-drive DC motors were used. An LQR observed-based controller was designed to realize angular position control of the link. The link controller was implemented using the custom-build EtherCAT panel. We present preliminary results of moving the joint link between angular target positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grioli, G., et al.: Variable stiffness actuators: the user’s point of view. Int. J. Robot. Res. 34(6), 727–743 (2015)

    Article  Google Scholar 

  2. Vanderborght, B., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  3. Ozawa, R., Kobayashi, H., Hashirii, K.: Analysis, classification, and design of tendon-driven mechanisms. IEEE Trans. Robot. 30(2), 396–410 (2013)

    Article  Google Scholar 

  4. Ham, R.V., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 3(16), 81–94 (2009)

    Article  Google Scholar 

  5. Migliore, S.A., Brown, E.A., DeWeerth, S.P.: Biologically inspired joint stiffness control. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4508–4513. IEEE (2005)

    Google Scholar 

  6. Chotai, J., Narwekar, K.: Modelling and position control of brushed DC motor. In: 2017 International Conference on Advances in Computing, Communication and Control (ICAC3), pp. 1–5. IEEE (2017)

    Google Scholar 

  7. Ruderman, M., Krettek, J., Hoffmann, F., Bertram, T.: Optimal state space control of DC motor. IFAC Proc. Vol. 41(2), 5796–5801 (2008)

    Article  Google Scholar 

  8. Pinto, V.H., Gonçalves, J., Costa, P.: Model of a DC motor with worm gearbox. In: Gonçalves, J.A., Braz-César, M., Coelho, J.P. (eds.) CONTROLO 2020. LNEE, vol. 695, pp. 638–647. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58653-9_61

    Chapter  Google Scholar 

  9. Jacobsen, S.C., Ko, H., Iversen, E.K., Davis, C.C.: Control strategies for tendon-driven manipulators. IEEE Control Syst. Mag. 10(2), 23–28 (1990)

    Article  Google Scholar 

  10. Lee, Y.T., Choi, H.R., Chung, W.K., Youm, Y.: Stiffness control of a coupled tendon-driven robot hand. IEEE Control Syst. Mag. 14(5), 10–19 (1994)

    Article  Google Scholar 

  11. Stoelen, M.F., Bonsignorio, F., Cangelosi, A.: Co-exploring actuator antagonism and bio-inspired control in a printable robot arm. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds.) SAB 2016. LNCS (LNAI), vol. 9825, pp. 244–255. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43488-9_22

    Chapter  Google Scholar 

  12. Howard I.S., Stoelen, M.F.: State space analysis of variable-stiffness tendon drive with non-back-drivable worm-gear motor actuation. TAROS 2021, University of Lincoln (2021)

    Google Scholar 

Download references

Acknowledgments

We thank Simon Bates and Innovate UK project No: 104622 SoSehRaH and David Mozley at the University of Plymouth for EtherCAT Controller Proof of Concept support, Beckhoff (UK) for technical assistance and Fieldwork Robotics Ltd for supplying the GummiArm tendons, helpful discussion and access to their technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Howard, I.S., Stoelen, M.F. (2021). EtherCAT Implementation of a Variable-Stiffness Tendon Drive with Non-back-Drivable Worm-Gear Motor Actuation. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds) Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science(), vol 13054. Springer, Cham. https://doi.org/10.1007/978-3-030-89177-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89177-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89176-3

  • Online ISBN: 978-3-030-89177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics