Skip to main content

Automatic Graph Learning with Evolutionary Algorithms: An Experimental Study

  • Conference paper
  • First Online:
PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13031))

Included in the following conference series:

Abstract

In recent years, automated machine learning (AutoML) has received widespread attention from academia and industry owing to its ability to significantly reduce the threshold and labor cost of machine learning. It has demonstrated its powerful functions in hyperparameter optimization, model selection, neural network search, and feature engineering. Most AutoML frameworks are not specifically designed to process graph data. That is, in most AutoML tools, only traditional neural networks are integrated without using a graph neural network (GNN). Although traditional neural networks have achieved great success, GNNs have more advantages in processing non-Euclidean data (e.g., graph data) and have gained popularity in recent years. However, to the best of our knowledge, there is currently only one open-source AutoML framework for graph learning, i.e., AutoGL. For the AutoGL framework, traditional AutoML optimization algorithms such as grid search, random search, and Bayesian optimization are used to optimize the hyperparameters. Because each type of traditional optimization algorithm has its own advantages and disadvantages, more options are required. This study analyzes the performance of different evolutionary algorithms (EAs) on AutoGL through experiments. The experimental results show that EAs could be an effective alternative to the hyperparameter optimization of GNN.

C. Bu—Was partly supported by the National Natural Science Foundation of China (No. 61806065 and No. 91746209), the Fundamental Research Funds for the Central Universities (No. JZ2020HGQA0186), and the Project funded by the China Postdoctoral Science Foundation (No. 2018M630704).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/THUMNLab/AutoGL.

  2. 2.

    https://github.com/geatpy-dev/geatpy.

References

  1. Elshawi, R., Maher, M., Sakr, S.: Automated machine learning: State-of-the-art and open challenges, pp. 1–23 (2019). arXiv preprint arXiv:1906.02287

  2. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning. TSSCML, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

    Book  Google Scholar 

  3. He, X., Zhao, K., Chu, X.: Automl: a survey of the state-of-the-art. Knowl.-Based Syst. 212(106622), 1–27 (2021)

    Google Scholar 

  4. Guan, C., et al.: Autogl: a library for automated graph learning, pp. 1–8 (2021). arXiv preprint arXiv:2104.04987

  5. Liu, Y., Zeng, K., Wang, H., Song, X., Zhou, B.: Content matters: a GNN-based model combined with text semantics for social network cascade prediction. In: Karlapalem, K. (ed.) PAKDD 2021. LNCS (LNAI), vol. 12712, pp. 728–740. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_57

    Chapter  Google Scholar 

  6. Fan, W., et al.: Graph neural networks for social recommendation. In: Proceedings of The World Wide Web Conference, pp. 417–426. ACM (2019)

    Google Scholar 

  7. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  8. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 338–348. ACM (2020)

    Google Scholar 

  9. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 2, pp. 729–734. IEEE (2005)

    Google Scholar 

  10. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1(1), 57–81 (2020)

    Article  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks, pp. 1–14 (2016). arXiv preprint arXiv:1609.02907

  12. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks, pp. 1–12 (2017). arXiv preprint arXiv:1710.10903

  13. Bu, C., Luo, W., Yue, L.: Continuous dynamic constrained optimization with ensemble of locating and tracking feasible regions strategies. IEEE Trans. Evol. Comput 21(1), 14–33 (2017)

    Article  Google Scholar 

  14. Dang, D., Jansen, T., Lehre, P.K.: Populations can be essential in tracking dynamic optima. Algorithmica 78(2), 660–680 (2017)

    Article  MathSciNet  Google Scholar 

  15. Zhou, Z., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algorithms. Springer, Heidelberg (2019). https://doi.org/10.1007/978-981-13-5956-9

    Book  MATH  Google Scholar 

  16. Eiben, A.E., Smith, J.: From evolutionary computation to the evolution of things. Nature 521(7553), 476–482 (2015)

    Article  Google Scholar 

  17. Bu, C., Luo, W., Zhu, T., Yue, L.: Solving online dynamic time-linkage problems under unreliable prediction. Appl. Soft Comput. 56, 702–716 (2017)

    Article  Google Scholar 

  18. Zhu, T., Luo, W., Bu, C., Yue, L.: Accelerate population-based stochastic search algorithms with memory for optima tracking on dynamic power systems. IEEE Trans. Power Syst. 25, 268–277 (2015)

    Google Scholar 

  19. Yi, R., Luo, W., Bu, C., Lin, X.: A hybrid genetic algorithm for vehicle routing problems with dynamic requests. In: 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, 27 November–1 December 2017, pp. 1–8. IEEE (2017)

    Google Scholar 

  20. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 2902–2911. PMLR (2017)

    Google Scholar 

  21. Bu, C., Luo, W., Zhu, T., Yi, R., Yang, B.: Species and memory enhanced differential evolution for optimal power flow under double-sided uncertainties. IEEE Trans. Sustain. Comput. 5(3), 403–415 (2020)

    Article  Google Scholar 

  22. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: Proceedings of The 33rd International Conference on Machine Learning, pp. 40–48. PMLR (2016)

    Google Scholar 

  23. Storn, R.: On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing, pp. 519–523. IEEE (1996)

    Google Scholar 

  24. Opara, K.R., Arabas, J.: Differential evolution: a survey of theoretical analyses. Swarm Evol. Comput. 44(1), 546–558 (2019)

    Article  Google Scholar 

  25. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. NCS, Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  26. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2010)

    Article  Google Scholar 

  27. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  Google Scholar 

  28. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, Cambridge (1992)

    Google Scholar 

  29. Khatib, W., Fleming, P.J.: The stud GA: a mini revolution? In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 683–691. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056910

    Chapter  Google Scholar 

  30. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(1), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bu, C., Lu, Y., Liu, F. (2021). Automatic Graph Learning with Evolutionary Algorithms: An Experimental Study. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13031. Springer, Cham. https://doi.org/10.1007/978-3-030-89188-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89188-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89187-9

  • Online ISBN: 978-3-030-89188-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics