Abstract
Trust plays a role in the process of belief revision. When information is reported by another agent, it should only be believed if the reporting agent is trusted as an authority over some relevant domain. In practice, an agent will be trusted on a particular topic if they have provided accurate information on that topic in the past. In this paper, we demonstrate how an agent can construct a model of knowledge-based trust based on the accuracy of past reports. We then show how this model of trust can be used in conjunction with Ordinal Conditional Functions to define two approaches to trust-influenced belief revision. In the first approach, strength of trust and strength of belief are assumed to be incomparable as they are on different scales. In the second approach, they are aggregated in a natural manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet functions for contraction and revision. J. Symb. Logic 50(2), 510–530 (1985)
Bonanno, G.: Credible information, allowable information and belief revision - extended abstract. In: Moss, L.S. (ed.) Proceedings Seventeenth Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2019, Toulouse, France, 17–19 July 2019, EPTCS, vol. 297, pp. 82–90 (2019)
Booth, R., Fermé, E., Konieczny, S., Pérez, R.P.: Credibility-limited revision operators in propositional logic. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, 10–14 June 2012. AAAI Press (2012)
Booth, R., Hunter, A.: Trust as a precursor to belief revision. J. Artif. Intell. Res. 61, 699–722 (2018)
Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic networks. In: International Conference on Software Engineering and Formal Methods, pp. 54–61 (2003)
Dong, X., et al.: Knowledge-based trust: Estimating the trustworthiness of web sources. In: Proceedings of the VLDB Endowment, vol. 8 (2015). https://doi.org/10.14778/2777598.2777603
Hansson, S.O., Fermé, E.L., Cantwell, J., Falappa, M.A.: Credibility limited revision. J. Symb. Log. 66(4), 1581–1596 (2001)
Hunter, A., Booth, R.: Trust-sensitive belief revision. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 3062–3068. AAAI Press (2015)
Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation model for open multi-agent systems. Auton. Agents Multi-Agent Syst. 13(2), 119–154 (2006)
Krukow, K., Nielsen, M.: Trust structures. Int. J. Inf. Secur. 6(2–3), 153–181 (2007)
Liu, F., Lorini, E.: Reasoning about belief, evidence and trust in a multi-agent setting. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 71–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_5
Salehi-Abari, A., White, T.: Towards con-resistant trust models for distributed agent systems. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI), pp. 272–277 (2009)
Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, vol. II, pp. 105–134. Kluwer Academic Publishers (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hunter, A. (2021). Building Trust for Belief Revision. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13031. Springer, Cham. https://doi.org/10.1007/978-3-030-89188-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-89188-6_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89187-9
Online ISBN: 978-3-030-89188-6
eBook Packages: Computer ScienceComputer Science (R0)