Skip to main content

Semi-supervised Single Image Deraining with Discrete Wavelet Transform

  • Conference paper
  • First Online:
PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13033))

Included in the following conference series:

Abstract

In recent years, single image deraining has received considerable research interests. Supervised learning is widely adopted for training dedicated deraining networks to achieve promising results on synthetic datasets, while limiting in handling real-world rainy images. Unsupervised and semi-supervised learning-based deranining methods have been studied to improve the performance on real cases, but their quantitative results are still inferior. In this paper, we propose to address this crucial issue for image deraining in terms of backbone architecture and the strategy of semi-supervised learning. First, in terms of network architecture, we propose an attentive image deraining network (AIDNet), where residual attention block is proposed to exploit the beneficial deep feature from the rain streak layer to background image layer. Then, different from the traditional semi-supervised method by enforcing the consistency of rain pattern distribution between real rainy images and synthetic rainy images, we explore the correlation between the real clean images and the predicted background image by imposing adversarial losses in wavelet space \(I _{HH}\), \(I _{HL}\), and \(I _{LH}\), resulting in the final AID-DWT model. Extensive experiments on both synthetic and real-world rainy images have validated that our AID-DWT can achieve better deraining results than not only existing semi-supervised deraining methods qualitatively but also outperform state-of-the-art supervised deraining methods quantitatively. All the source code and pre-trained models are available at https://github.com/cuiyixin555/DeRain-DWT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Hsu, C.: A generalized low-rank appearance model for spatio-temporally correlated rain streaks. In: IEEE ICCV (2013)

    Google Scholar 

  2. Deng, S., et al.: Detail-recovery image deraining via context aggregation networks. In: IEEE CVPR, pp. 14548–14557 (2020)

    Google Scholar 

  3. Fan, Z., Wu, H., Fu, X., Hunag, Y., Ding, X.: Residual-guide feature fusion network for single image deraining. In: ACM MM, pp. 1751–1759 (2018)

    Google Scholar 

  4. Fu, X., Liang, B., Huang, Y., Ding, X., Paisley, J.: Lightweight pyramid networks for image deraining. In: IEEE TNNLS (2020)

    Google Scholar 

  5. Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.: Clearing the skies: a deep network architecture for single-image rain removal. IEEE TIP 26(6), 2944–2956 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: IEEE CVPR, pp. 1715–1723 (2017)

    Google Scholar 

  7. Fu, X., Liang, B., Huang, Y., Ding, X., Paisley, J.: Lightweight pyramid networks for image deraining. IEEE TNNLS 31(6), 1–14 (2019)

    Google Scholar 

  8. Chen, H., et al.: Pre-trained image processing transformer. arXiv:2012.00364 (2021)

  9. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  10. Jiang, K., et al.: Multi-scale progressive fusion network for single image deraining. In: IEEE CVPR, pp. 8343–8352 (2020)

    Google Scholar 

  11. Kang, L., Lin, C., Fu, Y.: Automatic single-image-based rain streaks removal via image decomposition. In: IEEE TIP (2012)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  13. Li, G., He, X., Zhang, W., Chang, H., Dong, L., Lin, L.: Non-locally enhanced encoder-decoder network for single image de-raining. In: ACM MM, pp. 1056–1064 (2018)

    Google Scholar 

  14. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 262–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_16

    Chapter  Google Scholar 

  15. Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: IEEE CVPR, pp. 2736–2744 (2016)

    Google Scholar 

  16. Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors (2016)

    Google Scholar 

  17. Liu, J.J., Hou, Q., Cheng, M.M., Wang, C., Feng, J.: Improving convolutional networks with self-calibrated convolutions. In: IEEE CVPR, pp. 10093–10102 (2020)

    Google Scholar 

  18. Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: IEEE ICCV (2015)

    Google Scholar 

  19. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE TPAMI 11(7), 674–693 (1989)

    Article  Google Scholar 

  20. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ Image quality analyzer. IEEE Sig. Process. Lett. 20, 209–212 (2013)

    Article  Google Scholar 

  21. Pan, J., Hu, Z., Su, Z., Yang, M.: \(l_0\)-regularized intensity and gradient prior for deblurring text images and beyond. In: IEEE TPAMI (2017)

    Google Scholar 

  22. Pang, B., Zhai, D., Jiang, J., Liu, X.: Single image deraining via scale-space invariant attention neural network. In: ACM MM, pp. 375–383 (2020)

    Google Scholar 

  23. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS Autodiff Workshop The Future of Gradient-based Machine Learning Software and Techniques

    Google Scholar 

  24. Ren, D., Shang, W., Zhu, P., Hu, Q., Meng, D., Zuo, W.: Single image deraining using bilateral recurrent network. IEEE TIP 29, 6852–6863 (2020)

    Google Scholar 

  25. Ren, D., Zuo, W., Zhang, D., Zhang, L., Yang, M.: Simultaneous fidelity and regularization learning for image restoration. IEEE TPAMI 43(1), 284–299 (2019)

    Article  Google Scholar 

  26. Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: IEEE CVPR (2019)

    Google Scholar 

  27. Wang, T., et al.: Spatial attentive single-image deraining with a high quality real rain dataset. In: IEEE CVPR (2019)

    Google Scholar 

  28. Yang, W., et al.: Deep joint rain detection and removal from a single image. In: IEEE CVPR, pp. 1357–1366 (2017)

    Google Scholar 

  29. Wang, C., Wu, Y., Su, Z., Chen, J.: Joint self-attention and scale-aggregation for self-calibrated deraining network. In: ACM MM, pp. 2517–2525 (2019)

    Google Scholar 

  30. Wang, C., Xing, X., Wu, Y., Su, Z., Chen, J.: DCSFN: deep cross-scale fusion network for single image rain removal. In: ACM MM, pp. 1643–1651 (2019)

    Google Scholar 

  31. Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: IEEE CVPR, pp. 3872–3881 (2019)

    Google Scholar 

  32. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  33. Li, X., et al.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: ECCV, pp. 2736–2744 (2016)

    Google Scholar 

  34. Yang, Y., Lu, H.: Single image deraining via recurrent hierarchy enhancement network. In: ACM MM, pp. 1814–1822 (2019)

    Google Scholar 

  35. Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: IEEE CVPR, pp. 2723–2733 (2020)

    Google Scholar 

  36. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: IEEE WACV (2021)

    Google Scholar 

  37. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: IEEE CVPR, pp. 695–704 (2018)

    Google Scholar 

  38. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE TCSVT 30(11), 3943–3956 (2019)

    Google Scholar 

  39. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: IEEE CVPR (2020)

    Google Scholar 

  40. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)

    Google Scholar 

  41. Zhu, H., Wang, C., Zhang, Y., Su, Z., Zhao, G.: Physical model guided deep image deraining. In: IEEE ICME, pp. 1–6 (2020)

    Google Scholar 

  42. Zhu, H., et al.: Singe image rain removal with unpaired information: a differentiable programming perspective. In: AAAI, pp. 9332–9339 (2019)

    Google Scholar 

  43. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE ICCV, pp. 2242–2251 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, X., Shang, W., Ren, D., Zhu, P., Gao, Y. (2021). Semi-supervised Single Image Deraining with Discrete Wavelet Transform. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13033. Springer, Cham. https://doi.org/10.1007/978-3-030-89370-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89370-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89369-9

  • Online ISBN: 978-3-030-89370-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics