Skip to main content

A Logic for Binary Classifiers and Their Explanation

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13040))

Included in the following conference series:

Abstract

Recent years have witnessed a renewed interest in Boolean functions in explaining binary classifiers in the field of explainable AI (XAI). The standard approach to Boolean functions is based on propositional logic. We present a modal language of a ceteris paribus nature which supports reasoning about binary classifiers and their properties. We study a family of classifier models, axiomatize it and show completeness of our axiomatics. Moreover, we prove that satisfiability checking for our modal language relative to such a class of models is NP-complete. We leverage the language to formalize counterfactual conditional as well as a variety of notions of explanation including abductive, contrastive and counterfactual explanations, and biases. Finally, we present two extensions of our language: a dynamic extension by the notion of assignment enabling classifier change and an epistemic extension in which the classifier’s uncertainty about the actual input can be represented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    So the classifier we model here is slightly more expressive than Boolean classifier. Introducing decision atoms \(\mathsf {t}(x), \mathsf {t}(y), \dots \) below allows us to encode more than two decision values (classifications). Sometime we also use binary/Boolean classifier in this more general sense. Notice that we cannot use the term psuedo-Boolean, since in Boolean function it means \( Val = \mathfrak {R}\) [5], but we need our \( Val \) staying finite.

  2. 2.

    In fact it appears to be a prime implicant, when we formally introduce this notion.

  3. 3.

    The notations AXp and CXp are credited to [17, 18].

  4. 4.

    There are other options besides measuring distance by cardinality, e.g., distance in sense of subset relation as [2]. We will consider them in further research.

  5. 5.

    A similar approach of ceteris paribus is [11]. They also refine Lewis’ semantics for counterfactual by selecting the closest worlds according to not only the actual world and antecedent, but also a set of formulas where they note as \(\Gamma \). The main technical difference is that they allow any counterfactual-free formula as a member of \(\Gamma \), while in our setting X only contains atomic formulas.

  6. 6.

    A remarkable fact is that not all \(\Rightarrow _X\) satisfy the strong centering condition, which says that the actual world is the only closest world when the antecedent is already true here. To see it, consider a toy classifier model (C, s) such that \(S = \{s, s',s'',s''' \}\) with \(s = \{p, q\}\), \(s' = \{p \}\), \(s'' = \{q\}\), \(s''' = \emptyset \). We have \( closest _{C}(s{,}p{,}\emptyset ) = \{s,s'\}\), rather than \( closest _{C}(s{,}p{,}\emptyset ) = \{s\}\). All the rest of conditions in \(\mathsf {VC}\) are satisfied regardless of what X is.

  7. 7.

    The symbol \(\triangle \) denotes symmetric difference.

  8. 8.

    For the significance of actionablility in XAI, see e.g. [26].

  9. 9.

    Notice that \(\mathsf {cn}_{Y{,} Atm \setminus Dec }\) is just another expression of \(\widehat{s}\) where \(s = Y\).

References

  1. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI 2017 Workshop on Explainable AI (XAI), vol. 8, no. 1, pp. 8–13 (2017)

    Google Scholar 

  2. Borgida, A.: Language features for flexible handling of exceptions in information systems. ACM Trans. Database Syst. (TODS) 10(4), 565–603 (1985)

    Article  Google Scholar 

  3. Caridroit, T., Lagniez, J.-M., Le Berre, D., de Lima, T., Montmirail, V.: A SAT-based approach for solving the modal logic S5-satisfiability problem. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 3864–3870. AAAI Press (2017)

    Google Scholar 

  4. Charrier, T., Herzig, A., Lorini, E., Maffre, F., Schwarzentruber, F.: Building epistemic logic from observations and public announcements. In: Proceedings of the Fifteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2016), pp. 268–277. AAAI Press (2016)

    Google Scholar 

  5. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applications. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  6. Dalal, M.: Investigations into a theory of knowledge base revision: preliminary report. In: Proceedings of the Seventh National Conference on Artificial Intelligence, vol. 2, pp. 475–479. Citeseer (1988)

    Google Scholar 

  7. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: 24th European Conference on Artificial Intelligence, ECAI 2020. Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 712–720. IOS Press (2020)

    Google Scholar 

  8. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: Advances in Neural Information Processing Systems, pp. 592–603 (2018)

    Google Scholar 

  9. Dretske, F: Meaningful perception. An Invitation to Cognitive Science: Visual Cognition, pp. 331–352 (1995)

    Google Scholar 

  10. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  11. Girard, P., Triplett, M.A.: Ceteris paribus logic in counterfactual reasoning. In: TARK 2015, pp. 176–193 (2016)

    Google Scholar 

  12. Grossi, D., Lorini, E., Schwarzentruber, F.: The ceteris paribus structure of logics of game forms. J. Artif. Intell. Res. 53, 91–126 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hempel, C.G., Oppenheim, P.: Studies in the logic of explanation. Philos. Sci. 15(2), 135–175 (1948)

    Article  Google Scholar 

  14. Herzig, A., Lorini, E.: A modal logic of perceptual belief. In: Lihoreau, F., Rebuschi, M. (eds.) Epistemology, Context, and Formalism. SL, vol. 369, pp. 197–211. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02943-6_12

    Chapter  Google Scholar 

  15. Herzig, A., Lorini, E., Maffre, F.: A poor man’s epistemic logic based on propositional assignment and higher-order observation. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 156–168. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48561-3_13

    Chapter  MATH  Google Scholar 

  16. Ignatiev, A., Cooper, M.C., Siala, M., Hebrard, E., Marques-Silva, J.: Towards formal fairness in machine learning. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 846–867. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_49

    Chapter  Google Scholar 

  17. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to abductive explanations and back again. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI), vol. 12414, pp. 335–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77091-4_21

    Chapter  Google Scholar 

  18. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine learning models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1511–1519 (2019)

    Google Scholar 

  19. Kment, B.: Counterfactuals and explanation. Mind 115(458), 261–310 (2006)

    Article  MathSciNet  Google Scholar 

  20. Lewis, D.: Counterfactuals. Harvard University Press, Cambridge (1973)

    MATH  Google Scholar 

  21. Martens, D., Provost, F.: Explaining data-driven document classifications. MIS Q. 38(1), 73–100 (2014)

    Article  Google Scholar 

  22. Mittelstadt, B., Russell, C., Wachter, S.: Explaining explanations in AI. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 279–288 (2019)

    Google Scholar 

  23. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  24. Quine, W.V.: A way to simplify truth functions. Am. Math. Mon. 62(9), 627–631 (1955)

    Article  MathSciNet  Google Scholar 

  25. Shi, W., Shih, A., Darwiche, A., Choi, A.: On tractable representations of binary neural networks. arXiv preprint arXiv:2004.02082 (2020)

  26. Sokol, K., Flach, P.A.: Counterfactual explanations of machine learning predictions: opportunities and challenges for AI safety. In: SafeAI@ AAAI (2019)

    Google Scholar 

  27. Van Benthem, J., Van Eijck, J., Kooi, B.: Logics of communication and change. Inf. Comput. 204(11), 1620–1662 (2006)

    Article  MathSciNet  Google Scholar 

  28. van der Hoek, W., Iliev, P., Wooldridge, M.J.: A logic of revelation and concealment. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, (AAMAS 2012), pp. 1115–1122. IFAAMAS (2012)

    Google Scholar 

  29. Van Der Hoek, W., Troquard, N., Wooldridge, M.J.: Knowledge and control. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021), pp. 719–726. IFAAMAS (2011)

    Google Scholar 

  30. van Ditmarsch, H., van Der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  31. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic epistemic logic with assignment. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), pp. 141–148. ACM (2005)

    Google Scholar 

  32. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learning: a review. arXiv preprint arXiv:2010.10596 (2020)

Download references

Acknowledgements

Support from the ANR-3IA Artificial and Natural Intelligence Toulouse Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Lorini, E. (2021). A Logic for Binary Classifiers and Their Explanation. In: Baroni, P., Benzmüller, C., Wáng, Y.N. (eds) Logic and Argumentation. CLAR 2021. Lecture Notes in Computer Science(), vol 13040. Springer, Cham. https://doi.org/10.1007/978-3-030-89391-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89391-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89390-3

  • Online ISBN: 978-3-030-89391-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics