Skip to main content

A Variant with the Variable-Sharing Property of Brady’s 4-Valued Implicative Expansion BN4 of Anderson and Belnap’s Logic FDE

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13040))

Included in the following conference series:

  • 716 Accesses

Abstract

A logic L has the “variable-sharing property” (VSP) if in all L-theorems of conditional form antecedent and consequent share at least a propositional variable. Anderson and Belnap consider the VSP as a necessary property any relevance logic has to fulfil. Now, among relevance logicians, Brady’s logic BN4 is widely viewed as the adequate implicative 4-valued logic. But BN4 does not have the VSP. The aim of this paper is to define a variant of BN4 having, in addition to the VSP, some properties that do not support its consideration as a mere artificial construct.

This work is supported by the Spanish Ministry of Science and Innovation under Grant [PID2020-116502GB-I00]. We thank three referees of CLAR 2021 for their comments and suggestions on a previous draft of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, in [21] it is stated that BN4 has the “quasi relevance property” (QRP) The QRP reads: if \(A\,{\rightarrow }\,B\) is a theorem, then either A and B share at least a propositional variable or both \(\lnot A\) and B are theorems. But BN4 lacks the VSP: \(\lnot (A\,{\rightarrow }\,A)\rightarrow (B\,{\rightarrow }{} \mathbf{B})\) is MBN4-valid.

  2. 2.

    Notice that the rule VEQ encloses an infinity of paradoxes of relevance, the simplest of which may be \(q \rightarrow (p\rightarrow p)\). Consequently, it cannot be a rule of a logic with the VSP.

  3. 3.

    A referee of CLAR 2021 worries about many-valued extensions because of the presence of such formulas as A8. This is an interesting question we cannot discuss in detail here. Let us only remark that the type of formulas the referee is concerned about is not the only fault of many-valued extensions; actually, they do not seem to collide with the VSP. For example, it is shown in “A general characterization of the variable-sharing property by means of logical matrices” (G. Robles and J. M. Méndez, Notre Dame Journal of Formal Logic, 53(2), 223–244, 2012) that relatively strong logics with the VSP have Dummett’s axiom for the intermediate logic LC (i.e., \((A\rightarrow B)\vee (B\rightarrow A)\)) as one of their theorems. The conclusion seems inescapable: the VSP and the disjunction property are independent of each other.

  4. 4.

    A referee of CLAR 2021 remarks that this result can be obtained as a special case of the general procedure described in §2 of “Generalizing functional completeness in Belnap-Dunn logic” (H. Omori and K. Sano, Studia Logica, 103(5), 883–917, 2015).

  5. 5.

    A referee of CLAR 2021 remarks that there are \(2^{17}\) different matrices with natural conditionals (in the sense of Definition 5) complying with the VSP. Well then, since this paper was written, we have pursued the topic it introduces and almost all the \(2^{17}\) variants are non-significant in the sense that they lack one or more of the properties MBN4\(^{\text {VSP}}\) exhibits (actually, only 24 of said matrices share the properties MBN4\(^{\text {VSP}}\) has).

References

  1. Anderson, A.R., Belnap, N.D., Jr., Dunn, J.M.: Entailment, the Logic of Relevance and Necessity, vol. II. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  2. Avron, A., Ben-Naim, J., Konikowska, B.: Cut-free ordinary sequent calculi for logics having generalized finite-valued semantics. Logica Universalis 1(1), 41–70 (2007). https://doi.org/10.1007/s11787-006-0003-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for C-systems with generalized finite-valued semantics. J. Log. Comput. 23(3), 517–540 (2013). https://doi.org/10.1093/logcom/exs039

    Article  MathSciNet  MATH  Google Scholar 

  4. Belnap, N.D., Jr.: Entailment and relevance. J. Symb. Log. 25(2), 144–146 (1960)

    Article  MathSciNet  Google Scholar 

  5. Belnap, N.D., Jr.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logic, pp. 8–37. D. Reidel Publishing Co., Dordrecht (1977)

    Google Scholar 

  6. Belnap, N.D., Jr.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–55. Oriel Press Ltd., Stocksfield (1977)

    Google Scholar 

  7. Brady, R.T.: Completeness proofs for the systems RM3 and BN4. Logique et Anal. (N.S.) 25, 9–32 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Brady, R.T. (ed.): Relevant Logics and Their Rivals, vol. II. Ashgate, Aldershot (2003)

    Google Scholar 

  9. Dunn, J.M.: Intuitive semantics for first-degree entailments and “coupled trees’’. Philos. Stud. 29, 149–168 (1976)

    Article  MathSciNet  Google Scholar 

  10. Dunn, J.M.: Partiality and its dual. Studia Logica 66, 5–40 (2000)

    Article  MathSciNet  Google Scholar 

  11. Dziobiak, W.: There are 2\(^{\aleph _{0}}\) logics with the relevance principle between R and RM. Studia Logica 42(1), 49–61 (1983). https://doi.org/10.1007/BF01418759

    Article  MathSciNet  MATH  Google Scholar 

  12. González, C.: MaTest (2011). https://sites.google.com/site/sefusmendez/matest. Accessed 27 June 2021

  13. López, S.M.: Belnap-Dunn semantics for the variants of BN4 and E4 which contain Routley and Meyer’s logic B. Logic Logical Philos. 1–28 (2021). https://doi.org/10.12775/LLP.2021.004

  14. Méndez, J.M., Robles, G.: The logic determined by Smiley’s matrix for Anderson and Belnap’s First Degree Entailment Logic. J. Appl. Non-Classical Log. 26(1), 47–68 (2016). https://doi.org/10.1080/11663081.2016.1153930

    Article  MathSciNet  MATH  Google Scholar 

  15. Méndez, J.M., Robles, G.: Strengthening Brady’s paraconsistent 4-valued logic BN4 with truth-functional modal operators. J. Log. Lang. Inf. 25(2), 163–189 (2016). https://doi.org/10.1007/s10849-016-9237-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Meyer, R.K., Giambrone, S., Brady, R.T.: Where gamma fails. Studia Logica 43, 247–256 (1984). https://doi.org/10.1007/BF02429841

    Article  MathSciNet  MATH  Google Scholar 

  17. Omori, H., Wansing, H.: 40 years of FDE: an introductory overview. Studia Logica 105(6), 1021–1049 (2017). https://doi.org/10.1007/s11225-017-9748-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Petrukhin, Y., Shangin, V.: Correspondence analysis and automated proof-searching for first degree entailment. Eur. J. Math. 6, 1452–1495 (2020). https://doi.org/10.1007/s40879-019-00344-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Rasiowa, H.: An Algebraic Approach to Non-classical Logics, vol. 78. North-Holland Publishing Company, Amsterdam (1974)

    Book  Google Scholar 

  20. Robles, G.: The class of all 3-valued implicative expansions of Kleene’s strong logic containing Anderson and Belnap’s First degree entailment logic. J. Appl. Log. 8(7), 2035–2071 (2021)

    Google Scholar 

  21. Robles, G., Méndez, J.M.: A companion to Brady’s 4-valued relevant logic BN4: the 4-valued logic of entailment E4. Log. J. IGPL 24(5), 838–858 (2016). https://doi.org/10.1093/jigpal/jzw011

    Article  MathSciNet  MATH  Google Scholar 

  22. Robles, G., Méndez, J.M.: The class of all natural implicative expansions of Kleene’s strong logic functionally equivalent to Łukasiewicz’s 3-valued logic Ł3. J. Log. Lang. Inf. 29(3), 349–374 (2020). https://doi.org/10.1007/s10849-019-09306-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Routley, R., Meyer, R.K., Plumwood, V., Brady, R.T.: Relevant Logics and Their Rivals, vol. 1. Ridgeview Publishing Co., Atascadero (1982)

    MATH  Google Scholar 

  24. Slaney, J.: Relevant logic and paraconsistency. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 270–293. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30597-2_9

    Chapter  Google Scholar 

  25. Tomova, N.: A Lattice of implicative extensions of regular Kleene’s logics. Rep. Math. Log. 47, 173–182 (2012). https://doi.org/10.4467/20842589RM.12.008.0689

    Article  MathSciNet  MATH  Google Scholar 

  26. Wójcicki, R.: Theory of Logical Calculi: Basic Theory of Consequence Operations. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-015-6942-2

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Robles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robles, G. (2021). A Variant with the Variable-Sharing Property of Brady’s 4-Valued Implicative Expansion BN4 of Anderson and Belnap’s Logic FDE. In: Baroni, P., Benzmüller, C., Wáng, Y.N. (eds) Logic and Argumentation. CLAR 2021. Lecture Notes in Computer Science(), vol 13040. Springer, Cham. https://doi.org/10.1007/978-3-030-89391-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89391-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89390-3

  • Online ISBN: 978-3-030-89391-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics