Skip to main content

A General Framework for Matching Pattern Hiding in Deep Packet Inspection

  • Conference paper
  • First Online:
Information Security Applications (WISA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13009))

Included in the following conference series:

  • 1035 Accesses

Abstract

Recently proposed proposals, such as BlindBox (SIGCOMM 2015), PrivDPI (CCS 2019) and Pine (ESORICS 2020), enable privacy-preserving deep packet inspection (DPI) on the encrypted traffic. Despite that they protect traffic privacy and/or rule privacy against enterprises and the third-party middleboxes, they might not be really satisfactory, due to the leakage of the matching pattern. The matching pattern refers to the matched token-rule pairs during the process of inspection, which can be learnt by the middleboxes, leading to the privacy leakage concerns. Our work aims to hide the matching pattern, thereby enhancing the privacy on top of the mentioned proposals. Specifically, we propose a general framework for matching pattern hiding in DPI and construct a concrete scheme by resorting to the DDH-based private set intersection cardinality technique under the proposed framework. Besides, we implement the constructed scheme, and conduct extensive evaluations which demonstrate the practical performance of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B., Paul, S., McGrew, D.: Deciphering malware’s use of TLS (without decryption). J. Comput. Virol. Hack. Tech. 14(3), 195–211 (2018)

    Article  Google Scholar 

  2. Bhargavan, K., Boureanu, I., Delignat-Lavaud, A., Fouque, P.A., Onete, C.: A formal treatment of accountable proxying over TLS. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 799–816. IEEE (2018)

    Google Scholar 

  3. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith, W.E.: Public key encryption that allows PIR queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_4

    Chapter  Google Scholar 

  4. de Carnavalet, X.d.C., Mannan, M.: Killed by proxy: analyzing client-end TLS interception software. In: Network and Distributed System Security Symposium (2016)

    Google Scholar 

  5. De Caro, A., Iovino, V.: jPBC: Java pairing based cryptography. In: 2011 IEEE symposium on computers and communications (ISCC), pp. 850–855. IEEE (2011)

    Google Scholar 

  6. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_17

    Chapter  Google Scholar 

  7. Duan, H., Wang, C., Yuan, X., Zhou, Y., Wang, Q., Ren, K.: LightBox: full-stack protected stateful middlebox at lightning speed. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2351–2367 (2019)

    Google Scholar 

  8. Durumeric, Z., et al.: The security impact of https interception. In: NDSS (2017)

    Google Scholar 

  9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM (JACM) 43(3), 431–473 (1996)

    Article  MathSciNet  Google Scholar 

  10. Google: Https encryption on the web (2021). https://transparencyreport.google.com/https/overview?hl=en. Accessed 13 June 2021

  11. Han, J., Kim, S., Ha, J., Han, D.: SGX-box: enabling visibility on encrypted traffic using a secure middlebox module. In: Proceedings of the First Asia-Pacific Workshop on Networking, pp. 99–105 (2017)

    Google Scholar 

  12. Huang, L.S., Rice, A., Ellingsen, E., Jackson, C.: Analyzing forged SSL certificates in the wild. In: 2014 IEEE Symposium on Security and Privacy, pp. 83–97. IEEE (2014)

    Google Scholar 

  13. Ion, M., et al.: On deploying secure computing: private intersection-sum-with-cardinality. In: 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 370–389. IEEE (2020)

    Google Scholar 

  14. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption: ramification, attack and mitigation. In: Ndss, vol. 20, p. 12. Citeseer (2012)

    Google Scholar 

  15. Kanizo, Y., Rottenstreich, O., Segall, I., Yallouz, J.: Designing optimal middlebox recovery schemes with performance guarantees. IEEE J. Sel. Areas Commun. 36(10), 2373–2383 (2018)

    Article  Google Scholar 

  16. Lai, S., et al.: Practical encrypted network traffic pattern matching for secure middleboxes. IEEE Trans. Dependable Secure Comput. (2021)

    Google Scholar 

  17. Lan, C., Sherry, J., Popa, R.A., Ratnasamy, S., Liu, Z.: Embark: securely outsourcing middleboxes to the cloud. In: 13th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 16), pp. 255–273 (2016)

    Google Scholar 

  18. Naylor, D., et al.: The cost of the “s” in https. In: Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies, pp. 133–140 (2014)

    Google Scholar 

  19. Naylor, D., Li, R., Gkantsidis, C., Karagiannis, T., Steenkiste, P.: And then there were more: secure communication for more than two parties. In: Proceedings of the 13th International Conference on emerging Networking EXperiments and Technologies, pp. 88–100 (2017)

    Google Scholar 

  20. Naylor, D., et al.: Multi-context TLS (mcTLS) enabling secure in-network functionality in TLS. ACM SIGCOMM Comput. Commun. Rev. 45(4), 199–212 (2015)

    Article  Google Scholar 

  21. Ning, J., et al.: Pine: enabling privacy-preserving deep packet inspection on TLS with rule-hiding and fast connection establishment. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 3–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_1

    Chapter  Google Scholar 

  22. Ning, J., Poh, G.S., Loh, J.C., Chia, J., Chang, E.C.: PrivDPI: privacy-preserving encrypted traffic inspection with reusable obfuscated rules. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1657–1670 (2019)

    Google Scholar 

  23. Ren, H., Li, H., Liu, D., Xu, G., Cheng, N., Shen, X.S.: Privacy-preserving efficient verifiable deep packet inspection for cloud-assisted middlebox. IEEE Trans. Cloud Comput. (2020)

    Google Scholar 

  24. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22

    Chapter  Google Scholar 

  25. Sherry, J., Lan, C., Popa, R.A., Ratnasamy, S.: BlindBox: deep packet inspection over encrypted traffic. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, pp. 213–226 (2015)

    Google Scholar 

  26. Sherry, J., Ratnasamy, S., At, J.S.: A survey of enterprise middlebox deployments (2012)

    Google Scholar 

  27. Silowash, G.J., Lewellen, T., L Costa, D., Lewellen, T.B.: Detecting and preventing data exfiltration through encrypted web sessions via traffic inspection (2013)

    Google Scholar 

  28. Snort. https://www.snort.org/. Accessed 13 June 2021

  29. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceeding 2000 IEEE Symposium on Security and Privacy, S&P 2000, pp. 44–55. IEEE (2000)

    Google Scholar 

Download references

Acknowledgement

We are grateful to Prof. Jian Weng for the guidance and advice, and the anonymous reviewers for their insightful comments. This research was supported in part by the Key-Area Research and Development Program of Guangdong Province (Grant Nos. 2020B0101360001, 2020B0101090004), the National Natural Science Foundation of China (Grant Nos. 61902067, 62072215), the GuangDong Basic and Applied Basic Research Foundation (2020A1515111175), and the Foundation for Young Innovative Talents in Ordinary Universities of Guangdong (2018KQNCX255).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, J., Liu, JN., Wu, A., Weng, J. (2021). A General Framework for Matching Pattern Hiding in Deep Packet Inspection. In: Kim, H. (eds) Information Security Applications. WISA 2021. Lecture Notes in Computer Science(), vol 13009. Springer, Cham. https://doi.org/10.1007/978-3-030-89432-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89432-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89431-3

  • Online ISBN: 978-3-030-89432-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics