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Abstract

The sliding window model generalizes the standard streaming model and often performs
better in applications where recent data is more important or more accurate than data that
arrived prior to a certain time. We study the problem of approximating symmetric norms (a
norm on Rn that is invariant under sign-flips and coordinate-wise permutations) in the sliding
window model, where only the W most recent updates define the underlying frequency vector.
Whereas standard norm estimation algorithms for sliding windows rely on the smooth histogram
framework of Braverman and Ostrovsky (FOCS 2007), analyzing the smoothness of general
symmetric norms seems to be a challenging obstacle. Instead, we observe that the symmetric
norm streaming algorithm of Braverman et al. (STOC 2017) can be reduced to identifying
and approximating the frequency of heavy-hitters in a number of substreams. We introduce a
heavy-hitter algorithm that gives a (1 + ε)-approximation to each of the reported frequencies
in the sliding window model, thus obtaining the first algorithm for general symmetric norm
estimation in the sliding window model. Our algorithm is a universal sketch that simultaneously
approximates all symmetric norms in a parametrizable class and also improves upon the smooth
histogram framework for estimating Lp norms, for a range of large p. Finally, we consider
the problem of overconstrained linear regression problem in the case that loss function that
is an Orlicz norm, a symmetric norm that can be interpreted as a scale-invariant version of
M -estimators. We give the first sublinear space algorithms that produce (1 + ε)-approximate
solutions to the linear regression problem for loss functions that are Orlicz norms in both the
streaming and sliding window models.

1 Introduction

The efficient estimation of norms is a fundamental problem in the streaming model, which implicitly
defines an underlying frequency vector through a series of sequential updates to coordinates of
the vector, but each update may only be observed once. For example, the L2 and entropy norms
are frequently used to detect network anomalies [KSZC03, TZ04, CBM06], while the L1 norm
is used to monitor network traffic [FKSV02] and perform low-rank approximation and linear
regression [FMSW10], and the top-k and Ky Fan norms are commonly used in matrix optimization
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problems [WDST14]. These norms all have the property that they are invariant to permutations
and sign flips of the coordinates of the underlying vectors:

Definition 1.1 (Symmetric norm). A norm ` : Rn → R is a symmetric norm if for all x ∈ Rn
and any n × n permutation matrix P , we have `(x) = `(Px) and `(x) = `(|x|), where |x| is the
coordinate-wise absolute value of x.

Symmetric norms include the Lp, entropy, top-k, k-support, and box norms, and many other
examples that we detail in Section 4.1. Braverman et al. [BBC+17] show that a symmetric norm
` can be approximated using space roughly mmc(`)2, where mmc is the maximum modulus of
concentration of the norm `, whose formal definition we will defer to Section 4.1. Informally, mmc(`)
is roughly the ratio of the maximum value ` achieves on a unit ball compared to the meidan value
of ` on the unit ball.

Sliding window model. Unfortunately, the streaming model does not prioritize recent data that
is considered more accurate and important than data that arrived prior to a certain time. Thus
for a number of time-sensitive applications [BBD+02, MM12, PGD15, WLL+16], the streaming
model has inferior performance compared to the sliding window model, in which the underlying
dataset consists of only the W most recent updates in the stream. The fixed parameter W > 0
represents the window size for the active data and the goal is to process information about the
dataset using space sublinear in W . Note that the sliding window model is a generalization of
the streaming model, e.g., when the stream length m is at most W . The sliding window model is
especially relevant in time-dependent settings such as network monitoring [CM05, CG08, Cor13],
event detection in social media [OMM+14], data summarization [CNZ16, ELVZ17], and has been
also studied in a number of additional settings [LT06a, LT06b, BO07, DM07, BOZ12, BLLM15,
BLLM16, BGL+18, BEL+19, BDM+20, WZ20, BEL+20, JWZ21].

Problem statement. Formally, the model is as follows. Given a symmetric norm ` : Rn → R,
we receive updates u1, . . . , um to the coordinates of an underlying frequency vector f . Each update
with i ∈ [m] satisfies ui ∈ [n] so that the i-th update effectively increments the ui-th coordinate
of f . However, in the sliding window model, only the last W updates define f so that for each
j ∈ [n], we have fj = |{i : ui = j, i ≥ m−W + 1}|. The goal is to approximate `(f) at the end of
the stream, but m is not given in advance so we cannot simply maintain a sketch of the last W
elements because we do not know the value of m−W + 1 a priori.

The main challenge of the sliding window model is that updates to f expire implicitly. Thus we
cannot apply linear sketching techniques, which forms the backbone of many streaming algorithms.
For example, we do not know that the update um−W does not affect the value of f until the very
last update. Thus if we maintain a sketch of the updates that includes um−W , we must “undo” the
inclusion of um−W at time m; however at that time, it may be too late to remember the value of
um−W .

1.1 Our Results

In this paper, we give the first generic framework that can approximate any symmetric norm of an
underlying frequency vector in the sliding window model.
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Theorem 1.2. Given an accuracy parameter ε > 0 and a symmetric norm `, there exists a sliding
window algorithm that outputs a (1 + ε)-approximation to the `-norm of the underlying frequency
vector with probability 2

3 and uses space mmc(`)2 · poly
(

1
ε , log n

)
.

Our framework has specific implications to the well-studied Lp norms and the top-k norm that
is used in matrix optimization, as well as the k-support, box, and more generally, Q′-norms that are
frequently used to regularize sparse recovery problems in machine learning. We summarize these
applications in Figure 1 and provide additional detail on these norms in Section 4.1. In particular for

Problem Space Complexity Reference

Symmetric norm ` mmc(`)2 · poly
(

1
ε , log n

)
Theorem 1.2

Lp norm, p ∈ [1, 2] poly
(

1
ε , log n

)
Corollary 4.6

Lp norm, p > 2 poly
(

1
ε , log n

)
· n1−2/p Corollary 4.8

k-support norm poly
(

1
ε , log n

)
Corollary 4.6

Q′ norm poly
(

1
ε , log n

)
Corollary 4.6

Box norm poly
(

1
ε , log n

)
Corollary 4.6

Top-k norm n
k · poly

(
1
ε , log n

)
Corollary 4.11

Fig. 1: Summary of our sliding window algorithms

sufficiently large p > 2, our Lp norm sliding window algorithm improves upon the Õ
(

1
εp+2n

1−2/p
)

space algorithm by [BO07]. Our framework not only uses near-optimal space complexity for these
applications, but is also a universal sketch that suffices to simultaneously approximate all symmetric
norms in a wide parametrizable class.

Theorem 1.3. Given an accuracy parameter ε > 0 and a space parameter S, there exists a sliding
window algorithm that uses space S · poly

(
1
ε , log n

)
and outputs a (1 + ε)-approximation to any

symmetric norm ` with mmc(`) ≤
√
S, with probability 2

3 .

The general approach to sliding window algorithms is to use the smooth histogram framework
by Braverman and Ostrovsky [BO07]. The smooth histogram framework requires the desired
objective to be smooth, where given adjacent substreams A, B, and C, a smooth function states that
(1− η)f(A ∪B) ≤ f(B) implies (1− ε)f(A ∪B ∪ C) ≤ f(B ∪ C) for some constants 0 < η ≤ ε < 1.
Intuitively, once a suffix of a data stream becomes a (1± η)-approximation for a smooth function,
then it is always a (1± ε)-approximation, regardless of the subsequent updates that arrive in the
stream. Since the resulting space complexity depends on η, this approach requires analyzing the
smoothness of each symmetric norm and it is not clear how these parameters relate to mmc(`) or
whether there is a general parametrization for each norm.

Instead, we observe that [BBC+17] effectively reduces the problem to computing a (1 + ν)-
approximation to the frequency of all η-heavy hitters for a number of various substreams.

Definition 1.4 (ν-approximate η-heavy hitters). Given any accuracy parameter ν, a threshold
parameter η, and a frequency vector f , an algorithm A is said to solve the ν-approximate η-heavy
hitters problem if it outputs a set H and a set of approximations f̂i for all i ∈ H such that:
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(1) If fi ≥ η ‖f‖2 for any i ∈ [n], then i ∈ H. That is, H contains all η-heavy hitters of f .

(2) There exists an absolute constant C > 0 so that if fi ≤ Cη
2 ‖f‖2 for any i ∈ [n], then i /∈ H.

That is, H does not contain any item that is not an Cη
2 -heavy hitter of f .

(3) If i ∈ H, then A reports a value f̂i such that (1− ν)fi ≤ f̂i ≤ (1 + ν)fi. That is, A outputs a
(1± ν)-approximation to the frequency fi, for all i ∈ H.

Thus to approximate a symmetric norm on the active elements, it suffices to find ν-approximate
η-heavy hitters for a number of substreams. Whereas the sliding window heavy-hitter algo-
rithms [BGO14, BGL+18] optimize for space complexity and only output constant factor ap-
proximations to the frequencies of the reported elements, we give a simple modification to their
ideas to output ν-approximate η-heavy hitters.

Theorem 1.5. Let f be a frequency vector on [n] induced by the active window of an insertion-only
data stream. For any accuracy parameter ν ∈

(
0, 1

4

)
and threshold η ∈ (0, 1), there exists a one-pass

streaming algorithm that outputs a list that includes all η-heavy hitters and no element that is not a
η
8 -heavy hitter. Moreover, the algorithm reports a (1 + ν)-approximation to the frequency fi of all

reported items i. The algorithm uses O
(

1
ν3η2

log3 n
)

bits of space and succeeds with high probability.

In summary, our main conceptual contribution is the existence of a (1 + ε)-approximation
algorithm for general symmetric norms in the sliding window model. Our technical contributions
include an overall framework that incorporates any symmetric norm in a plug-and-play manner as
well as a heavy-hitter subroutine that may be of independent interest. Finally, we perform a number
of empirical evaluations comparing our algorithms to uniform sampling on large-scale real-world
datasets.

Independent and concurrent related work. Independent of our work, [KR19] has given a
framework for subadditive functions that extends beyond the smooth histogram approach of [BO07].
In particular, their framework gives a (2 + ε)-approximation for symmetric norms in the sliding
window model. By comparison, our algorithm achieves a (1 + ε)-approximation for symmetric norms
on sliding windows. Their techniques are based on black-boxing the streaming algorithm of [BBC+17]
that approximates the symmetric norm and initializing various instances of the algorithm as the
stream progresses. We open up the black box by instead introducing a new heavy-hitter algorithm
in the sliding window model and using properties of heavy-hitters and level sets to enable a finer
approximation to the symmetric norm, e.g., [IW05, BOR15, WZ18, WZ21].

Symmetric norm regression. As a further application of our work, we consider the fundamental
overconstrained linear regression problem in the case that loss function that is a symmetric norm,
which includes many standard loss functions such as Lp norms, top-k norms, and Q′-norms.
Specifically, given a data matrix A ∈ Rn×d and a response vector b ∈ Rn with n � d, we aim
to minimize the optimization problem minx∈Rd L(Ax − b), where L : Rn → R is a loss function.
When L is a symmetric norm, then the loss function places emphasis on the magnitude of the
incorrect coordinates rather than their specific indices. In particular, we consider the general case
where L is an Orlicz norm, which can be interpreted as a scale-invariant version of M -estimators.
Embeddings for (1 + ε)-approximate solutions to the linear regression problem for loss functions that
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are Orlicz norms in the central model, where complete access to A is given, was recently studied by
[ALS+18, SWY+19]. We give the first algorithms that produce (1 + ε)-approximate solutions to the
linear regression problem for loss functions that are Orlicz norms in both the streaming and sliding
window models. Our algorithms are parametrized by a constant ∆, which represents the aspect
ratio of the dataset under the norm.

Theorem 1.6. Given an accuracy ε > 0 and a matrix A ∈ RW×d whose rows a1, . . . ,aW arrive
sequentially in a stream r1, . . . , rn with condition number at most κ, there exists both a streaming
algorithm and a sliding window algorithm that outputs a (1 + ε) embedding for an Orlicz norm

with high probability. The algorithms sample d2∆
ε2

log κpolylog n rows, with high probability. (See
Theorem 2.5 and Theorem 2.8.)

1.2 Preliminaries

For any positive integer n, we use [n] to denote the set {1, . . . , n}. We say an event occurs with
high probability, if the probability of the event occurring is 1− 1

poly(n) , for any arbitrary polynomial

that can be determined from altering constants. We use polylog(n) to suppress polylogarithmic
factors. For a vector f ∈ Rn, we use fi to denote the i-th coordinate of f . We use ◦ to denote the

vertical concatenation of rows, so that for row vectors a1,a2 ∈ Rd, we have a1 ◦ a2 =

[
a1

a2

]
. The

condition number of a matrix A ∈ Rn×d is the ratio of its largest singular value to its smallest
nonzero singular value. The condition number of a stream a1 ◦ a2 ◦ . . . ◦ am is the largest condition
number of any matrix ai ◦ . . . ◦ aj formed by a consecutive number of rows.

In the sliding window model, we have a stream of length m, where we assume m = poly(n). For
each i ∈ [m], the update ui ∈ [n] (if active) corresponds to a single increment to coordinate ui of
the underlying frequency vector of dimension n. For a window parameter W > 0, only the most
recent W updates define the underlying frequency vector, as the previous updates are expired.

Definition 1.7 (Lp norms). For a vector f ∈ Rn and p > 0, we have the Lp norm ‖f‖p =

(
∑n

i=1 f
p
i )

1/p
. For p = 0, L0 is not a norm, but nevertheless we define ‖f‖0 = |{i ∈ [n] : fi 6= 0}|.

We require the following streaming and sliding window algorithms.

Theorem 1.8 (CountSketch for heavy-hitters). [CCF04] Let f be an underlying frequency vector
on [n] implicitly defined on through a dynamic (or insertion-only) stream. There exists a one-pass
streaming algorithm CountSketch that takes a threshold parameter ν > 0 and outputs a list H
that contains all indices i ∈ [n] with fi ≥ ν · ‖f‖2 and no index j ∈ [n] with fj ≤ ν

2 · ‖f‖2. The
algorithm uses O

(
1
ν2

log2 n
)

bits of space and succeeds with high probability.

Lemma 1.9 (Frequency estimation on sliding windows). [AMS99, BO07] Let C = 17
16 . There exists

a one-pass streaming algorithm FreqEst that simultaneously outputs 2-approximations to the L2

norm of the frequency vector induced by any suffix of an insertion-only stream. That is, for a stream
of length m, the algorithm maintains a data structure that outputs a value F for any query W ∈ [m],
such that F ≤ ‖f‖2 ≤ C · F , where f is the frequency vector induced by the last W updates of the
stream. The algorithm uses O

(
log2 n

)
bits of space and succeeds with high probability.

Lemma 1.10 (Approximate count of an item). [BGL+18] For a stream of length m, a time t ∈ [m],
an index i ∈ [n], and an accuracy parameter η > 0, there exists a deterministic one-pass streaming
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algorithm Counter that simultaneously outputs a
(
1 + η

4

)
-approximation to the frequency of i

between t and all times u ∈ [t,m]. The algorithm uses O
(

1
η log2 n

)
bits of space and never fails.

The smoothness of the L2 norm is instrumental in not only ensuring FreqEst in Lemma 1.9
achieves a constant factor approximation, but also that the space of FreqEst is polylogarithmic.

Lemma 1.11 (Smoothness of L2 norm). [BO07] Let C = 17
16 . For an insertion-only stream of length

m, let a < b < c ≤ d ≤ m and Xa be a C-approximation to the L2 norm of the frequency vector
induced by the updates from time a to time c in the stream (inclusive). Let Xb be a C-approximation
to the L2 norm of the frequency vector induced by the updates from time b to time c in the stream
(inclusive). Let Ya be the L2 norm of the frequency vector induced by the updates from time a to d
and Yb be similarly defined from time b to d. If Xa ≤ C ·Xb, then Ya ≤ 2Yb.

2 Linear Regression for Orlicz Norms

In this section, we describe our algorithm for linear regression for Orlicz norms in the streaming and
sliding window models. Given a data matrix A ∈ Rn×d and a response vector b ∈ Rn with n� d,
recall that the goal of the overconstrained linear regression problem is to minimize the optimization
problem minx∈Rd L(Ax − b), where L : Rn → R is a loss function. For a function G, we define
the corresponding Orlicz norm ‖x‖G of a vector x ∈ Rn to be zero if x = 0n and to be the unique
value α such that

∑n
i=1G(|xi|/α) = 1 otherwise if x 6= 0n. In order to obtain (1 + ε)-approximation

to linear regression for Orlicz norms, [SWY+19] makes the assumption that (1) G is a strictly
increasing convex function on [0,∞), (2) G(0) = 0 and G(x) = G(−x) for all x ∈ R, and (3) there
exists an absolute constant CG such that for all 0 < x < y, G(y)/G(x) ≤ CG(y/x)2. We also assume
without loss of generality that each coordinate of A is an integer that is at most M in magnitude
for some large M = poly(n).

Definition 2.1 (Online L1 sensitivity). For a matrix A = a1 ◦ . . . ◦an ∈ Rn×d, let Ai = a1 ◦ . . . ◦ai
for each i ∈ [n]. Then the online L1 sensitivity of a row ai is defined as

max
x∈Rd

|〈ai,x〉|
‖Aix‖1

.

The online L1 sensitivities can be efficiently approximated, e.g., see [CEM+15, CMP16, CMM17,
BDM+20]. Namely, a constant factor approximation to any online Lp sensitivity that is at least

1
poly(n) can be computed in polynomial time using (offline) linear programming. Similarly, an

additive 1
poly(n) approximation to any online Lp sensitivity that is less than 1

poly(n) can be computed

in polynomial time using (offline) linear programming.

Theorem 2.2 (Freedman’s inequality). [Fre75] Suppose Y0, Y1, . . . , Yn is a scalar martingale with
difference sequence X1, . . . , Xn. Specifically, we initiate Y0 = 0 and set Yi = Yi−1 +Xi for all i ∈ [n].
Let R ≥ |Xt| for all t ∈ [n] with high probability. We define the predictable quadratic variation
process of the martingale by wk :=

∑k
t=1 E

t−1

[
X2
t

]
, for k ∈ [n]. Then for all ε ≥ 0 and σ2 > 0, and

every k ∈ [n],

Pr

[
max
t∈[k]
|Yt| > ε and wk ≤ σ2

]
≤ 2 exp

(
− ε2/2

σ2 +Rε/3

)
.
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Algorithm 1 Subspace embedding for Orlicz norms in the row-arrival streaming model

Input: A stream of rows a1, . . . ,an ∈ Rd, parameter ∆ > 0, and an accuracy parameter ε > 0
Output: A (1 + ε) subspace embedding for Orlicz norms.
1: M← ∅
2: α← Cd

ε2
log n with sufficiently large parameter C > 0

3: for each row ai, i ∈ [n] do
4: if ai ∈ Span(M) then

5: τi ← 2∆ ·maxx∈Rd,x∈Span(M)
|〈ai,x〉|

‖Mx‖1+|〈ai,x〉|
6: else
7: τi ← 1

8: pi ← min(1, ατi)
9: With probability pi, M←M ◦ ai

pi
.Online sensitivity sampling

10: return M

Lemma 2.3. Let N be a greedily constructed ε-net such that ‖Ax‖G = 1 for all x ∈ N . Suppose
∆1 and ∆2 are parameters such that ∆1 ≤ |a>j x| ≤ ∆2 for all x ∈ N and j ∈ [n] and |a>j x| 6= 0.

Let ∆ ≥ G(∆1)·∆2

G(∆2)·∆1
in Algorithm 1. Then for ε > 1

n , Algorithm 1 outputs a matrix M such that for

all x ∈ Rd,
|‖Mx‖G − ‖Ax‖G| ≤ ε‖Ax‖G,

with high probability.

Proof. Let x ∈ Rd be an arbitrary vector with ‖Ax‖G = 1 and suppose ε ∈ (0, 1/2) with ε > 1
n . We

show via induction that |‖Mjx‖G−‖Ajx‖G| ≤ ε‖Ajx‖G for all j ∈ [n] with high probability, where
Mj is the reweighted submatrix of the input matrix A that has been sampled at time j. Either a1

is the zero vector or p1 = 1 so that M1 = A1 for the base case.
Suppose the statement holds for all j ∈ [n − 1]; we prove it holds for j = n. We define a

martingale Y0, Y1, . . . , Yn implicitly through the difference sequence X1, . . . , Xn. For j ≥ 1, we set
Xj = 0 if Yj−1 > ε‖Aj−1x‖pp. Otherwise if Yj−1 ≤ ε‖Aj−1x‖G, we set

Xj =

{(
1
pj
− 1
)
G(|a>j x|) if aj is sampled in M

−G(|a>j x|) otherwise.
(1)

Observe that the sequence Y0, . . . , Yn induced by the differences is indeed a valid martingale because
E [Yj |Y1, . . . , Yj−1] = Yj−1. By definition of the difference sequence, we also have

Yj = ‖Mjx‖G − ‖Ajx‖G .

If pj = 1, then aj is sampled in Mj , so that Xj = 0. Otherwise if pj < 1, then

E
[
X2
j |Y1, . . . , Yj−1

]
= pj

(
1

pj
− 1

)2

G(|a>j x|)2 + (1− pj)G(|a>j x|)2 ≤ 1

pj
G(|a>j x|)2.

Moreover, pj < 1 implies pj = ατj so that E
[
X2
j |Y1, . . . , Yj−1

]
≤ 1

ατj
G(|a>j x|)2. By the definition
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of τj and the inductive hypothesis that |‖Mj−1x‖G − ‖Aj−1x‖G‖ ≤ ε‖Aj−1x‖G < 1
2‖Aj−1x‖G,

τj ≥
2∆|a>j x|

‖Mj−1x‖1 + |a>j x|
=

2|a>j x|G(∆1)/∆1

G(∆2)/∆2(‖Mj−1x‖1 + |a>j x|)
≥

2G(|a>j x|)
‖Mj−1x‖G +G(|a>j x|)

,

since G(∆2)/∆2 ≥ G(|a>j x|) ≥ G(∆1)/∆1 for all aj ∈ Rd and x ∈ Rd, given the assumption that

M ≥ |a>j x|. Thus,

τj ≥
G(|a>j x|)

‖Aj−1x‖G +G(|a>j x|)
=
G(|a>j x|)
‖Ajx‖G

≥
G(|a>j x|)
‖Ax‖G

.

Consequently,
∑n

j=1 E
[
X2
j |Y1, . . . , Yj−1

]
≤
∑n

j=1

‖Ax‖G·G(|a>j x|)
α ≤ ‖Ax‖

2
G

α .

Moreover, |Xj | ≤ 1
pj
G(|a>j x|). For pj = 1, 1

pj
G(|a>j x|) ≤ ‖Ajx‖G ≤ ‖Ax‖G. On the other hand

if pj < 1, then pj = ατj < 1. Again by the definition of τj and by the inductive hypothesis that
|‖Mj−1x‖G − ‖Aj−1x‖G‖ ≤ ε‖Aj−1x‖G < 1

2‖Aj−1x‖G,

G(|a>j x|)
2‖Ajx‖G

≤
G(|a>j x|)

|Mj−1x|G +G(|a>j x|)
≤ τj .

Hence for α = Cd
ε2

log n,

|Xj | ≤
1

pj
G(|a>j x|) ≤ 2

α
‖Ajx‖G ≤

2ε2

Cd log n
‖Ajx‖G ≤

2ε2

Cd log n
‖Ax‖G.

We apply Freedman’s inequality (Theorem 2.2) with σ2 =
‖Ax‖2G
α for α = Cd

ε2
log n and R ≤

2ε2

d logn‖Ax‖G. Thus,

Pr [|Yn| > ε‖Ax‖G] ≤ 2 exp

(
−

ε2‖Ax‖2G/2
‖Ax‖2G/α+ 2ε2

d logn‖Ax‖G · ε‖Ax‖G

)
≤ 1

2Ω(d) poly(n)
,

for sufficiently large C.
We now union bound over an ε-net by first defining the unit ball B = {Ay ∈ Rn | ‖Ay‖G = 1}.

We also define N to be a greedily constructed ε-net of B. Since balls of radius ε
2 around each point

must not overlap while simultaneously all fitting into a ball of radius r + ε
2 for some constant r > 0,

then N has at most
(

3r
ε

)d
points. Thus by a union bound for 1

ε < n, | ‖My‖G−‖Ay‖G | ≤ ε ‖Ay‖G
for all Ay ∈ N , with probability at least 1− 1

poly(n) .

We claim accuracy on this ε-net suffices to prove accuracy everywhere. Let z ∈ Rd be a
nonzero normalized vector so that ‖Az‖G = 1. We inductively define a sequence Ay1,Ay2, . . . with∥∥∥Az−

∑i
j=1 Ayj

∥∥∥
G
≤ εi and there exists some constant γi ≤ εi−1 with 1

γi
Ayi ∈ N for all i. For the

base case, we define Ay1 to be the closest point to Az in the ε-net N so that ‖Az−Ay1‖G ≤ ε. For

the inductive step, given a sequence Ay1, . . . ,Ayi−1 such that γi :=
∥∥∥Az−

∑i−1
j=1 Ayj

∥∥∥
G
≤ εi−1,

note that 1
γi

∥∥∥Az−
∑i−1

j=1 Ayj

∥∥∥
G

= 1, the next point in the sequence is defined as Ayi ∈ N so that
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Ayi is within distance ε of Az−
∑i−1

j=1 Ayj . Hence,

| ‖Mz‖G − ‖Az‖G | ≤
∞∑
i=1

| ‖Myi‖G − ‖Ayi‖G | ≤
∞∑
i=1

εi ‖Ayi‖G = O (ε) ‖Az‖G ,

which finally completes the inductive step for time n.

Lemma 2.4. [BDM+20] For a matrix A = a1 ◦ . . . ◦ an ∈ Rn×d that arrives as a stream with
condition number κ, let `i be the online L1 sensitivity of ai. Then

∑n
i=1 `i = O (d log n log κ).

Theorem 2.5 (Subspace Embedding for Orlicz Norms in the Streaming Model). Given ε > 0 and
a matrix A ∈ Rn×d whose rows a1, . . . ,an arrive sequentially in a stream with condition number at
most κ, there exists a streaming algorithm that outputs a (1 + ε) subspace embedding for an Orlicz

norm with high probability. The algorithm samples O
(
d2∆
ε2

log2 n log κ
)

rows, with high probability,

where ∆ is defined as in Lemma 2.3.

Proof. Algorithm 1 is correct with high probability, by Lemma 2.3. It remains to analyze the space
complexity of Algorithm 1. By Lemma 2.3 and a union bound over the n rows in the stream, each
row ai is sampled with probability at most 4α∆`i, where `i is the online leverage score of row ai.
By Lemma 2.4,

∑n
i=1 `i = O (d log n log κ). Since α = O

(
d
ε2

log n
)
, then by a standard coupling and

concentration argument, the total number of sampled rows is O
(
d2∆
ε2

log2 n log κ
)

.

Applications to the Sliding Window Model. Coresets are dimensionality reduction tools
with extensive applications [FL11, LK17, SW18, MSSW18, ABB+19, BLG+19, BLUZ19, HV20,
Fel20, MOB+20, MRWZ20, BHM+21]. An online coreset for a matrix A is a weighted subset of
rows of A that also provides a good approximation to a certain desired function (such as Orlicz
norm) to all prefixes of A.

Definition 2.6 (Online Coreset). An online coreset for a function f , an approximation parameter
ε > 0, and a matrix A ∈ Rn×d = a1 ◦ . . . ◦ an is a subset of weighted rows of A such that for any
Ai = a1 ◦ . . . ◦ ai with i ∈ [n], f(Mi) is a (1 + ε)-approximation of f(Ai), where Mi is the matrix
that consists of the weighted rows of A in the coreset that appear at time i or before.

Observe that the proof of Lemma 2.3 is by induction and thus shows that Algorithm 1 admits
an online coreset. [BDM+20] showed that a streaming algorithm that admits an online coreset with
probability 1− 1

poly(n) can be adapted to a sliding window algorithm for W = poly(n).

Theorem 2.7. [BDM+20] Let r1, . . . , rn ∈ R be a stream of rows, ε > 0, and A = rn−W+1 ◦ . . . ◦ rn
be the matrix consisting of the W most recent rows. If there exists a online coreset algorithm for a
matrix function f that stores S(n, d, ε) rows, then there exists a sliding window algorithm that stores

O
(
S
(
n, d, ε

logn

)
log n

)
rows and outputs a matrix M such that f(M) is a (1 + ε)-approximation

of f(A).

Since Algorithm 1 admits an online coreset with probability 1− 1
poly(n) , then Theorem 2.7 implies

a sliding window algorithm for Orlicz norms:
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Theorem 2.8 (Subspace Embedding for Orlicz Norms in the Sliding Window Model). Given ε > 0
and a matrix A ∈ RW×d whose rows a1, . . . ,aW arrive sequentially in a stream r1, . . . , rn with
condition number at most κ, there exists a sliding window algorithm that outputs a (1 + ε) subspace

embedding for an Orlicz norm with high probability. The algorithm samples O
(
d2∆
ε2

log5 n log κ
)

rows, with high probability, where ∆ is defined as in Lemma 2.3.

3 Approximate Heavy-Hitters in the Sliding Window Model

In this section, we describe our ν-approximate η-heavy hitters algorithm that appears in Algorithm 2,
slightly perturbing constants for the ease of discussion. Our starting point is the L2 norm estimation
algorithm FreqEst in [BO07]. FreqEst maintains a number of timestamps {ti} throughout the
data stream, along with a separate streaming algorithm for each ti that stores a sketch of the L2

norm of the elements in the stream after ti. [BO07] observes that it suffices for {ti} to maintain
the invariant that the sketches of at most two timestamps produce values that are within 2 of each
other, since by Lemma 1.11 (and with precise constants) they would always output values that
are within 2 afterwards. Hence, if the length of the stream m is polynomially bounded in n, then
the number of total timestamps is O (log n). Moreover, two of these timestamps will sandwich the
starting point of the sliding window and provide a 2-approximation to the L2 norm of the active
elements and more generally, there exists an algorithm FreqEst that outputs a 2-approximation
to any suffix of the stream. See Figure 2 for an illustration about the intuition of FreqEst.

t8t7t6t5t4t3t2t1

Stream of elements Active window

Fig. 2: FreqEst maintains a series of timestamps ti along with a sketch of the L2 norm of the
updates from time ti to the end of the stream. The timestamps have the invariant that at most two
sketches output values that are within 2 of each other. In particular, t3 and t4 sandwich the L2

norm of the active window within a factor of 2.

To transition from L2 norm estimation to η-heavy hitters, [BGO14, BGL+18] simultaneously
run instances of the CountSketch heavy-hitter algorithm starting at each of the timestamps
ti. Any η-heavy hitter of the active elements must be a η

2 -heavy hitter of the stream starting at
some timestamp, since one of these timestamps ti contains the active elements but has L2 norm
at most 2 times the L2 norm of the active elements. Hence, all η-heavy hitters will be reported
by the corresponding CountSketch starting at ti. However, it can also report elements that
do not appear in the window at all, e.g., the elements after ti but before m − W + 1. Thus,
[BGO14, BGL+18] also maintains a constant factor approximation to the frequency of each item
reported by CountSketch as a final check, through comparison with the estimated L2 norm from
FreqEst. These parameters are insufficient to obtain ν-approximate η-heavy hitters, since 1) a
constant factor approximation to each frequency cannot give a (1 + ν)-approximation and 2) if
CountSketch only reports elements once they are η-heavy, then it is possible that a constant
fraction of the frequency is missed, e.g., if the frequency is 2η · ‖f‖2. To address these issues, we
apply two simple fixes in Figure 3.

10



(1) Find a superset of the possible heavy-hitters of the active window by taking heavy-hitters
of a superset of the active window, but with a lower threshold, i.e. O (νη) rather than η.

(2) For each possible heavy-hitter, maintain a (1 +O (ν))-approximation to its frequency.

(3) Report the items with sufficiently high estimated frequency.

Fig. 3: Crude outline of ν-approximate η-heavy hitter sliding window algorithm.

First, we maintain a (1 + O (ν))-approximation to the frequency of each item reported by
CountSketch. However, we note that we only track the frequency of an item once it is reported
by CountSketch and thus the second issue still prevents our algorithm from reporting a (1 + ν)-
approximation for sufficiently small ν because a constant fraction of the frequency can still be
missed before being reported by CountSketch. Thus the second idea is to report items once
they are νη

32 -heavy hitters, so that only a O (ν) fraction of the frequency can be missed before each
heavy-hitter is tracked. We give a crude outline of our approach in Figure 3 and the algorithm in
full in Algorithm 2.

Algorithm 2 Algorithm for η-heavy hitters in sliding window model, with (1 + ν)-approximation
to frequency of reported items.

Input: A stream of elements u1, . . . , um ∈ [n], a window parameter W > 0, threshold η ∈ (0, 1),
accuracy parameter ν ∈

(
0, 1

4

)
Output: A list that contains all η-heavy hitters and no element that is not a η

2 -heavy hitters, along
with a (1 + ν) to the frequency of all items.

1: Run an instance of FreqEst on the stream.
2: T ← ∅
3: for each update ut ∈ [n] with t ∈ [m] do
4: T ← T ∪ {t}
5: Initialize CountSketcht with threshold νη

32 . .Identify a superset of the heavy-hitters
6: Xa ← estimated L2 norm of the frequency vector from time a ∈ T to t by FreqEst.
7: while exist b < c ∈ T with c < t−W + 1 or a < b < c ∈ T with Xa ≤ 17

16Xc do
8: Delete b from T and CountSketchb.

9: Ha ← heavy-hitters reported by CountSketcha from time a ∈ T to t.
10: F ← estimated L2 norm of the frequency vector from time min(1, t − W + 1) to t by

FreqEst.
11: for all a ∈ T and i ∈ Ha do
12: Use Counter for i, starting at time a. .

(
1 + ν

4

)
-accuracy

13: f̂i ← any underestimate to the frequency of i in the last W updates by Counter.
14: if f̂i ≥ η

2 · F then

15: Report i, with estimated frequency f̂i

We first show that Algorithm 2 does not output any items with sufficiently low frequency.

Lemma 3.1 (Low frequency items are not reported). Let f be the frequency vector induced by the
active window. For each i ∈ [n], if fi ≤ η

8 ‖f‖2, then Algorithm 2 does not report i.

11



Proof. Observe that either (1) i ∈ ∪a∈THa, so that i is a νη
32 -heavy hitter of some suffix of the

stream, or (2) i ∈ ∪a∈THa. In the latter case, i /∈ Ha for any a ∈ T , so then i will not be reported.
In the former case, an instance of Counter is maintained for i, so that f̂i is an underestimate of
fi. But F is a C-approximation to ‖f‖2 with C = 17

16 , so then fi ≤ η
8 ‖f‖2 implies f̂i <

η
2 · F for

ν ∈
(
0, 1

4

)
. Thus, i will not be reported due to Line 14 of Algorithm 2.

Next we show that not only are the heavy-hitters reported, but the estimated frequency for each
reported item is also a (1 + ν) approximation to the true frequency.

Lemma 3.2 (Heavy-hitters are reported accurately). Let f be the frequency vector induced by
the active window. For each i ∈ [n], if fi ≥ η · ‖f‖2, then Algorithm 2 reports i. Moreover,

f̂i ≤ fi ≤ (1 + ν)f̂i for any item i reported by Algorithm 2.

Proof. For ν ∈
(
0, 1

4

)
, the condition fi ≥ η · ‖f‖2 implies that i is a νη-heavy hitter of some suffix of

the stream. Namely for a stream of length m, let a ∈ T with a ≤ m−W + 1, so that the L2 norm
of the underlying frequency induced by the updates starting from time a is a C-approximation of
‖f‖2, with C = 17

16 . Then once νη
16 · ‖f‖2 instances of i are inserted at some time t after m−W + 1, i

will always be reported as a νη
32 -heavy hitter by CountSketcha. Hence, i ∈ Ha and an instance of

Counter is maintained for i, starting at time t. Since at most νη
16 · ‖f‖2 instances of i arrive before

t, certainly at least
(
1− ν

2

)
η · ‖f‖2 instances of i remain after t. Hence for ν ∈

(
0, 1

4

)
, Counter

reports at least (
1

1 + ν
4

)(
1− ν

2

)
η · ‖f‖2 ≥

(
1

1 + ν

)
η · ‖f‖2 ≥

η

2
· F

instances of i in the active window, since F ≤ ‖f‖2. Thus, i passes the check of Line 14 and is
reported by Algorithm 2, which completes the first part of the claim.

Similarly, at most νη
16 · ‖f‖2 instances of any item i reported by Algorithm 2 can be missed before

i is reported as a νη
32 -heavy hitter. If i passes the check of Line 14 and is reported by Algorithm 2,

then
f̂i ≥

η

2
· F ≥ η

4
· ‖f‖2 ,

since F ≥ 2 ‖f‖2. Thus, fi ≥ η

4(1+ ν
4 )
· ‖f‖2. Hence the additive error in the estimation of fi due

to the missing νη
16 · ‖f‖2 instances of i is only a relative

ν(1+ ν
4 )

4 error. Combined with the relative(
1 + ν

4

)
error of Counter, the total relative error is at most (1 + ν), for ν ∈

(
0, 1

4

)
.

Finally, we justify the correctness of our ν-approximate η-heavy hitters sliding window algorithm
and analyze the space complexity.

Proof of Theorem 1.5: Consider Algorithm 2. Observe that the correctness guarantees of
the algorithm follow immediately from Lemma 3.1 and Lemma 3.2. The space complexity follows
from noting that for logm = O (log n), the L2 norm of the underlying vector of the entire stream
is polynomially bounded in n. Thus, there are at most O (log n) times in T by Lemma 1.11. For
each time a ∈ T , Algorithm 2 uses an instance of CountSketch with threshold νη, an instance of
FreqEst, and an instance of Counter for each heavy-hitter reported by CountSketcha. By

Theorem 1.8, each instance of CountSketch uses O
(

1
ν2η2

log2 n
)

bits of space. By Lemma 1.9,

each instance of FreqEst uses O
(
log2 n

)
bits of space. Each CountSketcha with threshold νη

12



can report up to O
(

1
ν2η2

)
items, and each instance of Counter uses O

(
1
ν log2 n

)
bits of space by

Lemma 1.10. Thus, the total space used by Algorithm 2 is O
(

1
ν3η2

log3 n
)

bits. �

4 Symmetric Norms

In this section, we formalize our symmetric norm sliding window algorithm and give a number of
applications. We first require the following preliminary definitions that quantify specific properties
of symmetric norms.

Definition 4.1 (Modulus of concentration). Let X ∈ Rn be a random variable uniformly distributed
on the L2-unit sphere Sn−1. The median of a symmetric norm ` is the unique value M` such that
Pr [`(X) ≥ M`] ≥ 1

2 and Pr [`(X) ≤ M`] ≥ 1
2 . Then if b` denotes the maximum value of `(x) over

x ∈ Sn−1, then the ratio mc(`) := b`
M`

is called the modulus of concentration of the norm `.

The modulus of concentration characterizes the average behavior of the norm ` on Rn. However,
even if ` is well-behaved on average, more difficult norms can be embedded and hidden in a lower-
dimensional subspace. For example, [BBC+17] observes that mc(`) = O (1) for the L1 norm `,
but when x has fewer than

√
n nonzero coordinates, the norm `(x) = max(L∞(x), L1(x)/

√
n) on

the unit ball becomes identically L∞(x), which requires Ω(
√
n) space [AMS99]. Thus, we instead

consider the modulus of concentration over all lower dimensions.

Definition 4.2 (Maximum modulus of concentration). For every k ≤ n, the norm ` : Rn → R
induces a norm on Rk by setting `(k)((x1, . . . , xk)) = `((x1, . . . , xk, 0, . . . , 0)). The maximum modulus

of concentration of the norm ` is defined as mmc(`) := max
k≤n

mc(`(k)) = max
k≤n

b
`(k)

M
`(k)

.

We now reduce the problem of approximating a symmetric norm ` to the ν-approximate η-heavy
hitters problem.

Lemma 4.3 (Symmetric norm approximation through heavy-hitters). [BBC+17] Let ` be any

symmetric norm, ε > 0 and ν := O
(

ε2

logn

)
be fixed accuracy parameters, and η := O

(
ε5/2

mmc(`) log5/2 n

)
be a fixed threshold. Let R = Θ

(
log10 n
ε5

)
and for each i ∈ [log n] and r ∈ [R], let j ∈ [n] be sampled

into Si,r with probability 1
2i

. Let f be a frequency vector (possibly implicitly) defined on [n] and for
each i ∈ [log n], let gi,r be the frequency vector induced by setting all coordinates j ∈ [n] of f with
j /∈ Si.

Suppose there exists an algorithm that outputs ν-approximate η-heavy hitters Hi,r for each gi,r.
There exists a recovery function Estimate that recovers a (1+ε)-approximation to `(f) using {Hi,r}.
The running time of Estimate is polynomial in 1

ε and n and the working space of Estimate is the
space used to store {Hi}.

Informally, Lemma 4.3 states that to obtain a (1 + ε)-approximation to any symmetric norm `
of an underlying frequency vector, it suffices to use a ν-approximate η heavy-hitter algorithm. Here,
η and ν are parameters dependent on the norm `. We give additional intuition into Lemma 4.3 and
its proof by [BBC+17] in Appendix B.

We now formalize the argument of Theorem 1.2 by derandomizing the space complexity and
analyzing the space complexity. The proof of Theorem 1.3 is identical.
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Proof of Theorem 1.2: Let ` be any symmetric norm, ε > 0 and ν := O
(

ε2

logn

)
be fixed

accuracy parameters, and η := O
(

ε5/2

mmc(`) log5/2 n

)
be a fixed threshold. Let R = Θ

(
log10 n
ε5

)
and

for each i ∈ [log n] and r ∈ [R], let j ∈ [n] be sampled into Si,r with probability 1
2i

. Let f be a
frequency vector (possibly implicitly) defined on [n] and for each i ∈ [log n], let gi,r be the frequency
vector induced by setting all coordinates j ∈ [n] of f with j /∈ Si. Suppose we run an instance Ai,r
of our ν-approximate η-heavy hitters algorithm Algorithm 2 for each gi,r. By Theorem 1.5, we
obtain the ν-approximate η-heavy hitters Hi,r for each gi,r. Thus by Lemma 4.3, we can use Hi,r

and the procedure Estimate to recover a (1 + ε)-approximation to `(f).
To analyze the space complexity, observe that we have a single instance of the ν-approximate

η-heavy hitters algorithm Algorithm 2 for each gi,r, with ν := O
(

ε2

logn

)
, η := O

(
ε5/2

mmc(`) log5/2 n

)
. By

Theorem 1.5, the total space required for each instance of Algorithm 2 is O
(

log8 n
ε11

mmc(`)2
)

. Since

i ∈ [log n], r ∈ [R], and R = Θ
(

log10 n
ε5

)
, then the total space for the algorithm isO

(
log19 n
ε16

mmc(`)2
)

,

given unlimited access to random bits. Finally, if we use Nisan’s PRG to derandomize our algo-

rithm, then the total space for the algorithm is O
(

log20 n
ε16

mmc(`)2
)

. We give full details on the

derandomization in Appendix A. �

4.1 Applications

In this section, we demonstrate the application of Theorem 1.2 and Theorem 1.3 to a number of
symmetric norms. We summarize our results in Figure 1.

Q′-norms. We first that a (1+ε)-approximation of any Q′-norm, i.e., quadratic norm, in the sliding
window model only requires polylogarithmic space, using the maximum modulus of concentration
characterization of Q-norms by [BBC+17].

Definition 4.4 (Q-norm and Q′-norm). A norm ` : Rn → R is a Q-norm if there exists a
symmetric norm L : Rn → R such that for all x ∈ Rn, we have `(x) = L(x2)1/2, where x2 denotes
the coordinate-wise square power of x. Then a norm `′ : Rn → R is a Q′-norm if its dual norm is a
Q-norm.

Q′-norms includes the Lp norms for 1 ≤ p ≤ 2. [BBC+17] also notes that multiple Q′-norms have
been proposed to regularize sparse recovery problems in machine learning. For example, [AFS12]
shows that the k-support norm, whose unit ball is the convex hull of the set {x ∈ Rn : ‖x‖0 ≤
k and `2(x) ≤ 1}, is a Q′-norm that has a tighter relaxation than elastic nets and can thus be more
effective for sparse prediction. The box norm [MPS14], defined for Θ = {θ ∈ [a, b]n : `1(x) ≤ c},
given parameters 0 < a < b ≤ c, as `Θ(x) = minθ∈Θ

(∑n
i=1 x

2
i /θi

)1/2
, is a Q′-norm that is also a

generalization of the k-support norm. The box norm has been used to further optimize algorithms
for the sparse prediction problem specifically in the context of multitask clustering [MPS14].

Lemma 4.5. [BBC+17] mmc(`) = O (log n) for every Q′-norm `.

From Theorem 1.2 and Lemma 4.5, we obtain a sliding window algorithm for Q′-norm estimation.

Corollary 4.6. Given ε > 0, there exists a sliding window algorithm that uses poly
(

1
ε , log n

)
bits

of space and outputs a (1 + ε)-approximation to the Q′-norm.
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Lp norms. Since Q′-norms include Lp norms for p ∈ [1, 2], we now consider the approximation of
Lp norms for p > 2.

Lemma 4.7. [BBC+17] mmc(`) = O
(
n1/2−1/p

)
for every Lp norm with p > 2.

Thus Theorem 1.2 and Lemma 4.7 implies the following sliding window algorithm for Lp-norm
estimation.

Corollary 4.8. Given ε > 0 and p > 2, there exists a sliding window algorithm that uses
poly

(
1
ε , log n

)
· n1−2/p bits of space and outputs a (1 + ε)-approximation to the Lp-norm.

In particular, since the exponents of ε and log n are fixed, then for sufficiently large p, Corollary 4.8
improves on the results of [BO07], who give an algorithm using space 1

εp+2 polylog n · n1−2/p.

Top-k norms. We now show that a (1+ε)-approximation of any top-k norm in the sliding window
model only requires sublinear space, for sufficiently large k.

Definition 4.9 (Top-k norm). The top-k norm for a vector x ∈ Rn is the sum of the largest k
coordinates of |x|.

The top-k norm is a special case of the Ky Fan k-norm [WDST14] when the vector x represents
the entries in a diagonal matrix. Thus the top-k norm is often used to understand the Ky Fan
k-norm, which is used to regularize optimization problems in numerical linear algebra.

Lemma 4.10. [BBC+17] mmc(`) = Õ
(√

n
k

)
for the top-k norm `.

From Theorem 1.2 and Lemma 4.10, we obtain a sliding window algorithm for top-k norm estimation.

Corollary 4.11. Given ε > 0, there exists a sliding window algorithm that uses n
k · poly

(
1
ε , log n

)
bits of space and outputs a (1 + ε)-approximation to the top-k norm.
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A Derandomization of Algorithm 2

We first require the following pseudorandom generator to derandomize our algorithms.

Theorem A.1 (Nisan’s PRG). [Nis92] Let A be an algorithm that uses S = Ω(log n) space and R
random bits. Then there exists a pseudorandom generator for A that succeeds with high probability
and runs in O (S logR) bits.

We now claim the correctness of the derandomization of our algorithm using Nisan’s PRG. Recall
that Nisan’s PRG can be viewed as generating a stream of pseudorandom bits in a read-once tape
that can be used to generate random variables to fool a small space tester. However, an input tape
that can only be read once cannot be immediately given to algorithm to generate the randomness
required for the hash functions that govern whether an index j ∈ [n] is sampled into the sets Si,r in
Algorithm 2 because the indices sampled by each Si,r must be consistent whenever each coordinate
of the frequency vector i is updated. Instead, we use the standard reordering trick to derandomize
using Nisan’s PRG and argue indistinguishability.

For any fixed randomness R for the sampling of the set Si,r, let TR be the tester that tests
whether our heavy-hitter algorithm would output an index j ∈ [n] if R is hard-coded into the
tester and the random bits for the sampling procedures arrive in the stream. Formally, we define
TR(j,S,A1) = 1 if the algorithm with access to independent random bits outputs i on stream S
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and TR(j,S,A1) = 0 otherwise. Similarly, we define TR(j,S,A2) = 1 if using Nisan’s PRG on our
algorithm outputs i on stream S and TR(j,S,A2) = 0 otherwise.

For any fixed input stream S1, let S2 be an input stream in which all updates to a sin-
gle coordinate of the underlying frequency vector arrive consecutively in the active window.
Nisan’s PRG on the algorithm suffices to fool the tester TR on S2 from an algorithm with un-

limited access to random bits, i.e.,

∣∣∣∣∣Pr [TR(j,S2,A1) = 1] − Pr [TR(j,S2,A2) = 1]

∣∣∣∣∣ = 1
poly(n) , for

all j ∈ [n]. On the other hand, the order of the inputs does not change the identity of the
heavy-hitters within the active window, so that Pr [TR(j,S1,A1) = 1] = Pr [TR(j,S2,A1) = 1].
Similarly, the order of the inputs does not change the identity of the heavy-hitters within the
active window following Nisan’s PRG, so that Pr [TR(j,S1,A2) = 1] = Pr [TR(j,S2,A2) = 1]. Thus,∣∣∣∣∣Pr [TR(j,S1,A1) = 1] − Pr [TR(j,S1,A2) = 1]

∣∣∣∣∣ = 1
poly(n) , so that with high probability, a tester

cannot distinguish between an algorithm with derandomization using Nisan’s PRG and unlimited
access to random bits. The argument is completed by union bounding over all indices j ∈ [n] and all

instances of the algorithm Ai,r with i ∈ [log n], r ∈ [R], and R = Θ
(

log10 n
ε5

)
, assuming ε = 1

poly(n) .

B Intuition on Lemma 4.3

The main intuition of Lemma 4.3 is to decompose a symmetric norm `(x) on input vector x into the
contribution by each of its coordinates. The coordinates can then be partitioned into level sets, based
on how much they contribute to the norm `(x). The celebrated Indyk-Woodruff norm estimation
sketch [IW05, BOR15, WZ18, WZ21] can then be applied to approximate each of the level sets, by
subsampling the universe and estimating the sizes of each universe through the heavy-hitters of
each subsample.

Definition B.1 (Important Levels). For x ∈ Rn and α > 0, we define the level i as the set
Bi = {j ∈ [n] : αi−1 ≤ |xj | ≤ αi}. We use bi := |Bi| to denote the size of level i. Then level i is
β-important if

bi > β
∑
j>i

bj , biα
2i ≥ β

∑
j≤i

bjα
2j .

Intuitively, a level is important if its size is significant compared to all the higher levels and
its contribution is significant compared to all the lower levels. We shall show that identifying the
important levels and their sizes for a certain base α and parameter β suffices to approximate a
symmetric norm `(x).

Definition B.2 (Level Vectors and Buckets). Given a vector x ∈ Rn and the notation for the levels
of x, the level vector for x is

V (x) := (α1, . . . , α1︸ ︷︷ ︸
b1 times

, α2, . . . , α2︸ ︷︷ ︸
b2 times

, . . . , αk, . . . , αk︸ ︷︷ ︸
bk times

, 0, . . . , 0) ∈ Rn.

The i-th bucket of V (x) is

Vi(x) := ( 0, . . . , 0,︸ ︷︷ ︸
b1+...+bi−1 times

αi, . . . , αi︸ ︷︷ ︸
bi times

, . . . , 0, . . . , 0︸ ︷︷ ︸
bi+1+...+bk times

, 0, . . . , 0) ∈ Rn.
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The values V̂ (x) and V̂i(x) given approximations b̂1, . . . , b̂k for b1, . . . , bk are defined similarly. We
use V (x) \ Vi(x) to denote the vector that replaces the i-th bucket in V (x) with all zeros. Similarly,

V (x) \ Vi(x) ∪ V̂i(x) replaces the i-th bucket in V (x) with b̂i instances of αi. We omit the input x
when the dependency is clear from context.

We first relate approximating a symmetric norm to the concept of contributing levels and we
will ultimately show the relationship between contributing levels and important levels.

Definition B.3 (Contributing Levels). Level i of x ∈ Rn is β-contributing if `(Vi(x)) ≥ β`(V (x)).

The following lemma states that a good approximation to `(V ) can be obtained even if all levels
that are not β-contributing are removed.

Lemma B.4. [BBC+17] Let V ′ be the vector obtained by removing all levels that are not β-
contributing from V . Then (1−O (logα n) · β)`(V ) ≤ `(V ′) ≤ `(V ).

Thus for sufficiently small β, approximating the symmetric norm `(V ) reduces to identifying the
β-contributing levels:

Lemma B.5. [BBC+17] For precision ε > 0, let base α = (1 + O (ε)), importance parameter

β = O
(

ε5

mmc(`)2·log5(n)

)
, and ε′ = O

(
ε2

logn

)
. Let b̂i ≤ bi for all i and b̂i ≥ (1−ε′)bi for all β-important

levels. Let V̂ be the level vector constructed using α, b̂1, . . . and V ′ be the vector constructed by
removing all the buckets that are not β-contributing in V̂ . Then (1− ε)`(x) ≤ `(V ′) ≤ `(x).

The following pair of lemmas provide intuition on how to identify β-contributing levels.

Lemma B.6. [BBC+17] If level i is β-contributing, then there exists some fixed constant λ > 0
such that

bi ≥
λβ2

mmc(`)2 log2 n
·
∑
j>i

bj .

Lemma B.7. [BBC+17] If level i is β-contributing, then there exists some fixed constant λ > 0
such that

biα
2i ≥ λβ2

mmc(`)2(logα n) log2 n
·
∑
j≤i

bjα
2j .

Namely, Lemma B.6 and Lemma B.7 imply that a level i that is β-contributing must be an
important level. Moreover, the problem of approximating the size of each important level can be
reduced to the task of finding the ν-approximate η-heavy hitters.

Lemma B.8. [BBC+17] For level base α > 0, importance parameter β > 0 and precision ε′ > 0,
there exist parameters η, ν > 0 as defined in Lemma 4.3, such that a ν-approximate η-heavy hitters
algorithm can be used to output a (1 + ε′)-approximation to the size bi of all β-important levels.

The subroutine Estimate of Lemma 4.3 reconstructs an estimate of the level vector by removing
all the levels that are not β-contributing and using a (1 + ε′)-approximation to the sizes of all
β-important levels. It follows by Lemma B.5 that this procedure suffices to obtain a (1 + ε)-
approximation to `(x), thus (informally) justifying the correctness of Estimate.
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The (1 + ε′)-approximation to the size bi of all β-important levels guaranteed by Lemma B.8
is not immediate from the ν-approximate η-heavy hitters algorithm. Rather, the algorithm to
approximately recover the size bi of all β-important levels uses the same intuition as the Indyk-
Woodruff sketch [IW05]. The main observation is that each β-important level must have either large
size or large contribution (or both). If the β-important level has large contribution but small size,
then its elements will immediately be recognized as a heavy-hitter. Otherwise, if the β-important
level has large size, then a large number of these coordinates will be subsampled and ultimately
become heavy-hitters at some level i in which Θ

(
1
ε2

)
of these coordinates are subsampled. The size

bi can then approximately recovered by rescaling by the sampling probability, though additional
care must be used to formalize this argument, e.g., by randomizing the boundaries of the level sets.

C Empirical Evaluations

In this section, we evaluate the performance of our algorithm on both synthetic and real-world
dataset.

Synthetic data. We construct a synthetic stream as follows. We first generate an ordered list s1

of m
4 numbers starting from 2, i.e., s1 =

{
2, 3, 4, . . . m4 + 1

}
. We then generate a random stream s2

of size m
2 −

m
1000 from a universe of n− m

2 − 1 by drawing each element uniformly at random. That
is, x ∼ U

(
m
2 + 2, m2 + 3, ..., n

)
for each x ∈ s2. We combine these three streams S = s1 ◦ s1 ◦ s2,

where ◦ denotes the concatenation of the streams. Finally, we fix the last m
1000 fraction of the

stream to be 1. Thus, we have a stream S of length m on a universe of size n and for sufficiently
large m, the stream contains a single L2 heavy hitter (the element 1). We run experiments on
m ∈ {210, 211, 212, 213, 214, 215}. Moreover, we run experiments on both W = m so that the window
consists of the entire stream and W = m

2 so that the active elements are the latter half of the
stream.

CAIDA Anonymized Internet Traces 2019 Dataset. For real-world data we use the “Equinix-
nyc-2019” dataset from the Center for Applied Internet Data Analysis (CAIDA), which is collected
by a monitor in New York City that is connected to an OC192 backbone link (9953 Mbps) of a Tier
1 Internet Service Provider (ISP) between New York, NY and Sao Paulo, Brazil. The infrastructure
consists of 2 physical machines that each have a single Endace 6.2 DAG network monitoring card
that is connected to a single direction of the bi-directional backbone link. The source IP addresses
src are used as the input to our experiments.

Implementation. All algorithms are implemented in Python 3.8.3 and are carried out on Intel
Xeon Gold 6226 CPU and Tesla V100 16GB GPU. We test our algorithm on various normalization
functions such as Lp or top-k. We focus on the relative error of each algorithm, comparing the
performance of our algorithm to both uniform sampling the stream with 0.1 sampling rate and
uniform sampling the universe with 0.1 sampling rate when possible. The results are averaged over
the number of rows in the sketch and we do not consider the time performance of the algorithms,
which we consider beyond the scope of our paper.

Results. In Figure 4a and Figure 4b, we show how the various norm estimation errors perform
on our synthetic dataset as the stream length changes, both for W = m and W = m

2 , across
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m ∈ {210, 211, 212, 213, 214, 215}. We observe that our algorithm consistently performs the best and
although uniformly sampling from the universe performs poorly, uniformly sampling from the stream
performs surprisingly well for smaller stream lengths. This is because with such a large sampling
rate, the uniform sampling algorithms essentially use linear space. Nevertheless, our algorithm
demonstrates superior performance compared with these baselines.

In Figure 4c, we compare the various norm estimation errors perform on the CAIDA dataset for
W = m, across m ∈ {210, 211, 212, 213, 214, 215}. Because the universe consists of all possible source
IP addresses, it is not feasible to perform uniform sampling from the universe for the CAIDA dataset.
However, our algorithm again exhibits superior performance compared with uniform sampling from
the stream.

(a) Synthetic data, W = m (b) Synthetic data, W = m/2 (c) CAIDA

Fig. 4: Relative error as a function of stream length
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