Skip to main content

Touchless Fingerphoto Extraction Based on Deep Learning and Image Processing Algorithms; A Preview

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2021)

Abstract

In recent years, touchless fingerprint recognition systems have become a reliable alternative to the conventional touch fingerprint recognition system. Furthermore, with the current health crisis caused by the emergence of SARS-COV 2, the implementation of technologies that allow us to avoid direct contact with readers and devices arises as an urgent need. This article shows a system for fingerprint segmentation, filtering, and enhancement by fingerphoto technology. The dataset was acquired from smartphones on uncontrolled conditions. The proposed fingerprint recognition scheme provides an efficient preview of an automated identification system that can be extended to numerous security or administration applications. Skin model segmentation presents an accuracy of 95% over other solutions for background removal in the state of the art. For fingerphoto extraction, results were evaluated with the NIST Finger Image Quality \(NFIQ\) of the National Institute of Standards and Technology \(NIST\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FINTRAIL: COVID-19 and the rush to Digital Onboarding (2020). https://www.fintrail.co.uk/news/2020/10/28/covid-19-and-the-rush-to-digitalonboarding,. Accessed 13 Apr 2021

  2. Electronic Identification: Digital Onboarding: definition, characteristics and how it works (2021). https://www.electronicid.eu/es/blog/post/digital-onboardingprocess-financial-sector/en, Accessed 13 Apr 2021

  3. Carney, L.A., et al.: A multi-finger touchless fingerprinting system: mobile fingerphoto and legacy database interoperability. In: Proceedings of the 2017 4th International Conference on Biomedical and Bioinformatics Engineering, pp. 139–147, November 2017

    Google Scholar 

  4. Labati, R.D., Piuri, V., Scotti, F.: Touchless Fingerprint Biometrics. CRC Press, Boca Raton (2015)

    Google Scholar 

  5. Tiwari, K., Gupta, P.: A touch-less fingerphoto recognition system for mobile hand-held devices. In: 2015 International Conference on Biometrics (ICB), pp. 151–156, May 2015

    Google Scholar 

  6. Sankaran, A., Malhotra, A., Mittal, A., Vatsa, M., Singh, R.: On smartphone camera based fingerphoto authentication. In: 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–7, September 2015

    Google Scholar 

  7. Raghavendra, R., Busch, C., Yang, B.: Scaling-robust fingerprint verification with smartphone camera in real-life scenarios. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE, September 2013

    Google Scholar 

  8. Valdés González, F.M.: Reconocimiento de huellas dactilares usando la cámara de un dispositivo móvil (2015)

    Google Scholar 

  9. Labati, R.D., Genovese, A., Piuri, V., Scotti, F.: Touchless fingerprint biometrics: a survey on 2D and 3D technologies. J. Internet Technol. 15(3), 325–332 (2014)

    Google Scholar 

  10. Stein, C., Nickel, C., Busch, C.: Fingerphoto recognition with smartphone cameras. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–12. IEEE, September 2012

    Google Scholar 

  11. Derawi, M.O., Yang, B., Busch, C.: Fingerprint recognition with embedded cameras on mobile phones. In: International Conference on Security and Privacy in Mobile Information and Communication Systems, pp. 136–147. Springer, Berlin, May 2011

    Google Scholar 

  12. Morales Moreno, A.: Estrategias para la identificación de personas mediante biometría de la mano sin contacto (2011)

    Google Scholar 

  13. Hiew, B.Y., Teoh, A.B.J., Yin, O.S.: A secure digital camera based fingerprint verification system. J. Vis. Commun. Image Represent. 21(3), 219–231 (2010)

    Article  Google Scholar 

  14. Mueller, R., Sanchez-Reillo, R.: An approach to biometric identity management using low cost equipment. In: 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 1096–1100. IEEE, September 2009

    Google Scholar 

  15. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer Science & Business Media, London (2009)

    Google Scholar 

  16. Manders, C., et al.: Robust hand tracking using a skin tone and depth joint probability model. In: 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–6, September 2008

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241, October 2015

    Google Scholar 

  18. Wahab, A., Chin, S.H., Tan, E.C.: Novel approach to automated fingerprint recognition. IEE Proc. Vis. Image Sig. Proces. 145(3), 160–166 (1998)

    Article  Google Scholar 

  19. Tabassi, E.: NIST Fngerprint Image Quality (NFIQ) Compliance Test. US Department of Commerce, National Institute of Standards and Technology (2005)

    Book  Google Scholar 

  20. El cambio de paradigma en la industria de retail y centros comerciales postCovid-19 (2020). https://cincodias.elpais.com/cincodias/2020/06/22/legal/1592854555_991564.html. Accessed 13 Apr 2021

  21. The digital-led recovery from COVID-19: Five questions for CEOs (2020). https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-digital-led-recovery-from-covid-19-five-questions-for-ceos. Accessed 13 Apr 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Elizabeth López-Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Jiménez, M.E., Virgilio-González, V.R., Aguilar-Figueroa, R., Virgilio-González, C.D. (2021). Touchless Fingerphoto Extraction Based on Deep Learning and Image Processing Algorithms; A Preview. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Computational Intelligence. MICAI 2021. Lecture Notes in Computer Science(), vol 13067. Springer, Cham. https://doi.org/10.1007/978-3-030-89817-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89817-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89816-8

  • Online ISBN: 978-3-030-89817-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics