Skip to main content

RiskIPN: Pavement Risk Database for Segmentation with Deep Learning

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13067))

Included in the following conference series:

  • 1057 Accesses

Abstract

A large number of car accidents are caused by failures in the pavement. Their automatic detection is important for pavement maintenance, however, the current public datasets of images to train and test these systems contain a few hundred samples. In this paper, we introduce a new large dataset of images with more than 2000 samples that contains the five most common risks on pavement manually annotated. We analyze and describe statistically the properties of this dataset and we establish the performance of some baseline methods in order to be useful as a benchmark. We achieve up to 89.35% accuracy in the segmentation of the different types of risk on the pavement

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016)

    Google Scholar 

  2. Aich, S., van der Kamp, W., Stavness, I.: Semantic binary segmentation using convolutional networks without decoders. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, June 2018

    Google Scholar 

  3. Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection. IEEE Trans. Intell. Transp. Syst. 17(10), 2718–2729 (2016)

    Article  Google Scholar 

  4. Angulo, A., Vega-Fernández, J.A., Aguilar-Lobo, L.M., Natraj, S., Ochoa-Ruiz, G.: Road damage detection acquisition system based on deep neural networks for physical asset management. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds.) MICAI 2019. LNCS (LNAI), vol. 11835, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33749-0_1

    Chapter  Google Scholar 

  5. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  6. Budak, U., Guo, Y., Tanyildizi, E., Sengur, A.: Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Med. Hypotheses 134, 109431 (2020)

    Google Scholar 

  7. Cha, Y.-J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017)

    Google Scholar 

  8. Chambon, S., Moliard, J.-M.: Automatic road pavement assessment with image processing: review and comparison. Int. J. Geophys. 1–20, 2011 (2011)

    Google Scholar 

  9. Cheng, H.D., Chen, J.-R., Glazier, C., Hu, Y.G.: Novel approach to pavement cracking detection based on fuzzy set theory 13, 270–280 (1999)

    Google Scholar 

  10. Chollet, F.: Keras (2015). https://keras.io

  11. Escalona, U., Arce, F., Zamora, E., Sossa Azuela, J.H.: Fully convolutional networks for automatic pavement crack segmentation. Computacion y Sistemas 23(2) (2019)

    Google Scholar 

  12. Fan, R., Ai, X., Dahnoun, N.: Road surface 3d reconstruction based on dense subpixel disparity map estimation. IEEE Trans. Image Process. 27(6), 3025–3035 (2018)

    Article  MathSciNet  Google Scholar 

  13. Fan, Z., Wu, Y., Lu, J., Li, W.: Automatic pavement crack detection based on structured prediction with the convolutional neural network (2018)

    Google Scholar 

  14. Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations (2014)

    Google Scholar 

  16. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  17. Li, Q., Liu, X.: Novel approach to pavement image segmentation based on neighboring difference histogram method. In: 2008 Congress on Image and Signal Processing, vol. 2, pp. 792–796, May 2008

    Google Scholar 

  18. Liu, Y., Yao, J., Xiaohu, L., Xie, R., Li, L.: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019). Apr

    Article  Google Scholar 

  19. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.: Road damage detection using deep neural networks with images captured through a smartphone (2018)

    Google Scholar 

  20. Mazzini, D., Napoletano, P., Piccoli, F., Schettini, R.: A novel approach to data augmentation for pavement distress segmentation. Comput. Ind. 121, 103225 (2020)

    Article  Google Scholar 

  21. Mei, Q., Gül, M.: A cost effective solution for pavement crack inspection using cameras and deep neural networks. Constr. Build. Mater. 256, 119397 (2020)

    Article  Google Scholar 

  22. Nguyen, T.S., Avila, M., Begot, S.: Automatic detection and classification of defect on road pavement using anisotropy measure. In: 2009 17th European Signal Processing Conference, pp. 617–621, August 2009

    Google Scholar 

  23. Nguyen, T.S., Begot, S., Duculty, F., Avila, M.: Free-form anisotropy: a new method for crack detection on pavement surface images. In: 2011 18th IEEE International Conference on Image Processing, pp. 1069–1072, September 2011

    Google Scholar 

  24. Ochoa-Ruiz, G., et al.: An asphalt damage dataset and detection system based on RetinaNet for road conditions assessment. Appl. Sci. 10(11), 3974 (2020)

    Article  Google Scholar 

  25. Oliveira, H., Correia, P.L.: Crackit - an image processing toolbox for crack detection and characterization. In: 2014 IEEE International Conference on Image Processing (ICIP). IEEE, October 2014

    Google Scholar 

  26. Passos, B.T.: Cracks and potholes in road images (2020)

    Google Scholar 

  27. Rajagopal, M., Balasubramanian, M., Palanivel, S.: An efficient framework to detect cracks in rail tracks using neural network classifier. Computación y Sistemas 22(3) (2018)

    Google Scholar 

  28. Ren, Y., et al.: Image-based concrete crack detection in tunnels using deep fully convolutional networks. Constr. Build. Mater. 234, 117367 (2020). Feb

    Article  Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Nienaber, S., Booysen, M.J., Kroon, R.S.: Detecting potholes using simple image processing techniques and real-world footage (2015)

    Google Scholar 

  31. Shao, C., Chen, Y., Xu, F., Wang, S.: A kind of pavement crack detection method based on digital image processing. In: 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, December 2019

    Google Scholar 

  32. Shi, J., Li, Z., Zhu, T., Wang, D., Ni, C.: Defect detection of industry wood veneer based on NAS and multi-channel mask r-CNN. Sensors 20(16), 4398 (2020)

    Article  Google Scholar 

  33. Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17(12), 3434–3445 (2016)

    Article  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  35. Urbonas, A., Raudonis, V., Maskeliūnas, R., Damaševičius, R.: Automated identification of wood veneer surface defects using faster region-based convolutional neural network with data augmentation and transfer learning. Appl. Sci. 9(22), 4898 (2019)

    Article  Google Scholar 

  36. Yang, F., et al.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2020)

    Article  Google Scholar 

  37. Yusof, N.A.M., et al.: Automated asphalt pavement crack detection and classification using deep convolution neural network. In: 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, November 2019

    Google Scholar 

  38. Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE, September 2016

    Google Scholar 

  39. Zhao, H., Qin, G., Wang, X.: Improvement of canny algorithm based on pavement edge detection. In: 2010 3rd International Congress on Image and Signal Processing, pp. 964–967. IEEE, October 2010

    Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the support provided by the Instituto Politecnico Nacional under projects: SIP 20210788, SIP 20210316 and CONACYT under projects: 065 (Fronteras de la Ciencia) and 6005 (FORDECYT PRONACES) to carry out this research. Uriel Escalona thanks CONACYT for the scholarship granted towards pursuing his PhD studies. Authors acknowledge the support of social service students of the Instituto Politecnico Nacional for the creation of the database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Escalona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escalona, U., Zamora, E., Sossa, H. (2021). RiskIPN: Pavement Risk Database for Segmentation with Deep Learning. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Computational Intelligence. MICAI 2021. Lecture Notes in Computer Science(), vol 13067. Springer, Cham. https://doi.org/10.1007/978-3-030-89817-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89817-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89816-8

  • Online ISBN: 978-3-030-89817-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics