Skip to main content

Machine Learning Framework for Antalgic Gait Recognition Based on Human Activity

  • Conference paper
  • First Online:
  • 785 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13068))

Abstract

Antalgic gait is one of the most common abnormalities in human beings during the walking. This work presents a framework for the automatic recognition for antalgic and non-antalgic gaits, using the gyroscope of a smartphone for data acquisition. The test carried out was 10-meter walk, with a population of 30 subjects, 40% antalgics, and 60% non-antalgics; 80% was used in the training stage, and the rest for the test. A hypothesis testing and p-value method were developed to determine the statistical difference between both datasets and validate the usefulness of data in the features selection and classification approach. The classification algorithms used were: i) K-Nearest Neighbors (k-NN), ii) Naive Bayes (NB), iii) Support Vector Machines (SVM), iv) Discriminant Analysis (DA), v) Decision Trees (DT), and vi) Classification Ensembles (CE). The performance of the algorithms was evaluated using the metrics: Accuracy (ACC), Sensitivity (R), Specificity (SP), Precision (P), and F-measure (F). k-NN and SVM were the models with better performance with Accuracy of 99.44% and 98.88%, respectively. The obtained results allow to determine the feasibility of implementing this framework in real scenarios for its use in the improvement of diseases diagnosis and decision-making to antalgic gait diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35395-6_30

    Chapter  Google Scholar 

  2. Brahim, A., et al.: A decision support tool for early detection of knee osteoarthritis using x-ray imaging and machine learning: data from the osteoarthritis initiative. Comput. Med. Imaging Graph. 73, 11–18 (2019)

    Article  Google Scholar 

  3. Brenton-Rule, A., Mattock, J., Carroll, M., et al.: Reliability of the tekscan matscan® system for the measurement of postural stability in older people with rheumatoid arthritis. J. Foot Ankle Res. 5(1), 21 (2012)

    Google Scholar 

  4. Connor, P., Ross, A.: Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)

    Article  Google Scholar 

  5. Derawi, M., Bours, P.: Gait and activity recognition using commercial phones. Comput. Secur. 39, 137–144 (2013)

    Google Scholar 

  6. Fathima, S.S.S., Banu, W.R.: Abnormal walk identification for systems using gait patterns. Biomed. Res. India 27, S112–S117 (2016)

    Google Scholar 

  7. Frigui, H.: Clustering: algorithms and applications. In: 2008 First Workshops on Image Processing Theory, Tools and Applications, pp. 1–11. IEEE (2008)

    Google Scholar 

  8. Gafurov, D., Helkala, K., Søndrol, T.: Gait recognition using acceleration from mems. In: First International Conference on Availability, Reliability and Security (ARES 2006), p. 6. IEEE (2006)

    Google Scholar 

  9. Gafurov, D., Snekkenes, E., Bours, P.: Gait authentication and identification using wearable accelerometer sensor. In: 2007 IEEE Workshop on Automatic Identification Advanced Technologies, pp. 220–225. IEEE (2007)

    Google Scholar 

  10. Gu, X., Deligianni, F., Lo, B., Chen, W., Yang, G.Z.: Markerless gait analysis based on a single RGB camera. In: 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 42–45. IEEE (2018)

    Google Scholar 

  11. Hoang, T., Nguyen, T., Luong, C., Do, S., Choi, D.: Adaptive cross-device gait recognition using a mobile accelerometer. J. Inf. Process. Syst. 9(2), 333–348 (2013)

    Article  Google Scholar 

  12. Jun, K., Lee, Y., Lee, S., Lee, D.W., Kim, M.S.: Pathological gait classification using kinect v2 and gated recurrent neural networks. IEEE Access 8, 139881–139891 (2020)

    Article  Google Scholar 

  13. Khera, P., Kumar, N.: Role of machine learning in gait analysis: a review. J. Med. Eng. Technol. 44(8), 441–467 (2020)

    Article  Google Scholar 

  14. Kitade, I., et al.: Kinematic, kinetic, and musculoskeletal modeling analysis of gait in patients with cervical myelopathy using a severity classification. Spine J. 20(7), 1096–1105 (2020)

    Google Scholar 

  15. Kokkotis, C., Moustakidis, S., Papageorgiou, E., Giakas, G., Tsaopoulos, D.: Machine learning in knee osteoarthritis: a review. Osteoarthritis Cartilage Open, 100069 (2020)

    Google Scholar 

  16. Kozlow, P., Abid, N., Yanushkevich, S.: Gait type analysis using dynamic Bayesian networks. Sensors 18(10), 3329 (2018)

    Article  Google Scholar 

  17. MathWorks, I.: Heart sound classifier. https://la.mathworks.com/matlabcentral/ /fileexchange/65286-heart-sound-classifier (2021). Accessed 06 Apr 2021

  18. Nair, S.S., French, R.M., Laroche, D., Thomas, E.: The application of machine learning algorithms to the analysis of electromyographic patterns from arthritic patients. IEEE Trans. Neural Syst. Rehab. Eng. 18(2), 174–184 (2009)

    Article  Google Scholar 

  19. Ngo, T.T., Makihara, Y., Nagahara, H., Mukaigawa, Y., Yagi, Y.: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn. 47(1), 228–237 (2014)

    Article  Google Scholar 

  20. Paluszek, M., Thomas, S.: MATLAB Machine Learning. Apress, New York (2016)

    Google Scholar 

  21. Physiopedia: 10 metre walk test. https://physio-pedia.com.html (2021). Accessed 19 June 2021

  22. Recher, F., Banos, O., Nikamp, C.D., Schaake, L., Baten, C.T., Buurkc, J.H.: Optimizing activity recognition in stroke survivors for wearable exoskeletons. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 173–178. IEEE (2018)

    Google Scholar 

  23. Rong, L., Jianzhong, Z., Ming, L., Xiangfeng, H.: A wearable acceleration sensor system for gait recognition. In: 2007 2nd IEEE Conference on Industrial Electronics and Applications, pp. 2654–2659. IEEE (2007)

    Google Scholar 

  24. Sharif Bidabadi, S., Tan, T., Murray, I., Lee, G.: Tracking foot drop recovery following lumbar-spine surgery, applying multiclass gait classification using machine learning techniques. Sensors 19(11), 2542 (2019)

    Article  Google Scholar 

  25. Singh, J.P., Jain, S., Arora, S., Singh, U.P.: Vision-based gait recognition: a survey. IEEE Access 6, 70497–70527 (2018)

    Article  Google Scholar 

  26. Wan, C., Wang, L., Phoha, V.V.: A survey on gait recognition. ACM Comput. Surv. (CSUR) 51(5), 1–35 (2018)

    Article  Google Scholar 

  27. Whittle, M.W.: Gait Analysis: An Introduction. Butterworth-Heinemann, UK (2014)

    Google Scholar 

  28. Zhan, A., et al.: Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol. 75(7), 876–880 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar-Arturo Dominguez-Ramirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez-Islas, JC., Dominguez-Ramirez, OA., Lopez-Ortega, O., Paredes-Bautista, RD., Diazgiron-Aguilar, D. (2021). Machine Learning Framework for Antalgic Gait Recognition Based on Human Activity. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89820-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89819-9

  • Online ISBN: 978-3-030-89820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics