Skip to main content

Mexican Automotive Industry Sales Behavior During the COVID-19 Pandemic

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13068))

Included in the following conference series:

Abstract

This work shows the results of forecasting the behavior of sales in the Mexican automotive industry in a simulated scenario without COVID-19 and comparing it with the actual sales numbers. As this pandemic has caused traditional forecasting techniques to show poor performance and low prediction quality, this work aims to estimate the number of sales lost during the pandemic, using a machine learning model based on several explanatory variables and predicting those variables without the influence of the COVID-19 pandemic. Three different regression models were tested (Linear regression, Random Forest and Neural Network) creating scenarios and incorporating different variables into the models. Random Forest with 3 variables shows the highest predictive power. This model applied on forecast variables without pandemic’s impact predicts 1,342,028 units sold between February 2020 and January 2021, representing a 29.76% drop in sales and a total impact of 416,324 sales lost due to the pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Botchkarev, A.: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: properties and typology. Interdisc. J. Inf. Knowl. Manag. 14, 45–79 (2018). https://doi.org/10.28945/4184

  2. Deloitte: Perspectiva Industrial - Industria Automotriz (2020). https://www2.deloitte.com/content/dam/Deloitte/mx/Documents/finance/2020/Perspectiva-Industria-Automotriz-DEconosignal.pdf

  3. González, L.: Sales of Cars in Mexico Decreased 28 Percent in 2020. The Economist , Westminster (2021)

    Google Scholar 

  4. Heath, J.: Lo Que Indican Los Indicadores (2020). http://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/estudios/indican_indi/indica_v25iv12.pdf

  5. Ho, T.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995). https://doi.org/10.1109/ICDAR.1995.598994

  6. Idris, N.O., Achban, A., Utiarahman, S.A., Karim, J., Pontoiyo, F.: Predicting the selling price of cars using business intelligence with the feed-forward backpropagation algorithms. In: 2020 Fifth International Conference on Informatics and Computing (ICIC), pp. 1–6 (2020). https://doi.org/10.1109/ICIC50835.2020.9288594

  7. INEGI: Programa Anual de Investigación del INEGI (2021). https://sc.inegi.org.mx/repositorioNormateca/Od_28Ene21.pdf (2021)

  8. Lozano, L.F.: Industria Automotriz Espera Mejores Ventas En último Bimestre de (2020). https://www.forbes.com.mx/negocios-industria-automotriz-mejores-ventas-ultimo-bimestre-2020/

  9. Mauricio, J.: Temporal series analysis. In: UCM (2013)

    Google Scholar 

  10. Murtagh, F.: Fionn, m.: Multilayer perceptrons for classification and regression. Neurocomputing 2, 183–197 (1990). https://doi.org/10.1016/0925-2312(91)90023-5

  11. Paz, K.: La evolución en la venta de vehículos en tiempos de COVID 19 (2020). https://www.jato.com/mexico/la-evolucion-en-la-venta-de-vehiculos-en-tiempos-de-covid-19/

  12. Rodríguez, I.: Car sales in Mexico grow for the first time in three years (2020). https://expansion.mx/empresas/2020/03/04/la-venta-de-autos-en-mexico-crece-febrero-2020-amda

  13. Thornton, G.: Boletín de Economía (2020). https://www.grantthornton.mx/globalassets/1.-member-firms/mexico/pdf/boletin-de-economia-febrero-2020-v.1.pdf

  14. Uriel, E.: Introducción a la Econometría (2019). https://www.uv.es/uriel/manual/Introducci%C3%B3n%20a%20la%20econometr%C3%ADa%202012-09-2019%20B.pdf

  15. Wei, W.: Time series regression. In: International Encyclopedia of Statistical Science, pp. 1607–1609 (2011). https://doi.org/10.1007/978-3-642-04898-2_596

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramírez, J., Alarcón, J., Calzada, G., Ponce, H. (2021). Mexican Automotive Industry Sales Behavior During the COVID-19 Pandemic. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89820-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89819-9

  • Online ISBN: 978-3-030-89820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics