Abstract
In this paper, we present an algorithm to approximate the clique-width of a graph. The proposed approach is based on computing the shortest paths between pairs of vertices. We experimentally show that our proposal approximates the clique-width of simple graphs in polynomial time, while other methods that calculate it in an exact way, transform the problem to SAT, that is well-known as NP-Complete.
Supported by CONACYT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, NewYork (1999)
Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Sys. Sci. 46(2), 218–270 (1993)
Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is np-complete. SIAM J. Discrete Mathe. 23(2), 909–939 (2009)
Golumbic, M.C., Rotics, U.: Graph-theoretic concepts in computer science. In: 25th Proceedings of the International Workshop on Clique-Width of Perfect Graph Classes (WG1999) Ascona, Switzerland, June 17–19, 1999, pp. 135–147. Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-11409-0
Langer, Alexander, Reidl, Felix, Rossmanith, Peter, Sikdar, Somnath: Practical algorithms for MSO model-checking on tree-decomposable graphs. Comput. Sci. Rev. 1314, 39–74 (2014)
Derek, G. Corneil, M.H., Lanlignel, J.-M., Reed, B., Rotics, U.: Polynomial-time recognition of clique-width \(\le 3\) graphs. Discrete Appl. Math. 160(6), 834–865 (2012)
Bondy, J.-A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer, New York, London (2007)
Leonardo González-Ruiz, J., Raymundo Marcial-Romero, J., Hernández-Servín, J.A..: Computing the clique-width of cactus graphs. Electronic Notes in Theoretical Computer Science. In: Tenth Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning (LANMR), vol. 8, pp. 47–57 (2016)
Leonardo González-Ruiz, J., Raymundo Marcial-Romero, J., Hernández, J.A., De Ita. C.: Computing the clique-width of polygonal tree graphs. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) Advances in Soft Computing, pp. 449–459, Springer International Publishing, Cham (2017)
Marijn, J., Heule, H., Szeider, S.: A SAT Approach to clique-width. In: ACM Transactions on Computational Logic pp. 318–334. Springer, Berlin (2013)
Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101, 77–114 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
González-Ruiz, J.L., Marcial-Romero, J.R., Hernández, J.A., De-Ita, G. (2021). Approximate the Clique-Width of a Graph Using Shortest Paths. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-89820-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89819-9
Online ISBN: 978-3-030-89820-5
eBook Packages: Computer ScienceComputer Science (R0)