Skip to main content

Approximate the Clique-Width of a Graph Using Shortest Paths

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2021)

Abstract

In this paper, we present an algorithm to approximate the clique-width of a graph. The proposed approach is based on computing the shortest paths between pairs of vertices. We experimentally show that our proposal approximates the clique-width of simple graphs in polynomial time, while other methods that calculate it in an exact way, transform the problem to SAT, that is well-known as NP-Complete.

Supported by CONACYT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, NewYork (1999)

    Google Scholar 

  2. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Sys. Sci. 46(2), 218–270 (1993)

    Google Scholar 

  3. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is np-complete. SIAM J. Discrete Mathe. 23(2), 909–939 (2009)

    Google Scholar 

  4. Golumbic, M.C., Rotics, U.: Graph-theoretic concepts in computer science. In: 25th Proceedings of the International Workshop on Clique-Width of Perfect Graph Classes (WG1999) Ascona, Switzerland, June 17–19, 1999, pp. 135–147. Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-11409-0

  5. Langer, Alexander, Reidl, Felix, Rossmanith, Peter, Sikdar, Somnath: Practical algorithms for MSO model-checking on tree-decomposable graphs. Comput. Sci. Rev. 1314, 39–74 (2014)

    Article  Google Scholar 

  6. Derek, G. Corneil, M.H., Lanlignel, J.-M., Reed, B., Rotics, U.: Polynomial-time recognition of clique-width \(\le 3\) graphs. Discrete Appl. Math. 160(6), 834–865 (2012)

    Google Scholar 

  7. Bondy, J.-A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer, New York, London (2007)

    Google Scholar 

  8. Leonardo González-Ruiz, J., Raymundo Marcial-Romero, J., Hernández-Servín, J.A..: Computing the clique-width of cactus graphs. Electronic Notes in Theoretical Computer Science. In: Tenth Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning (LANMR), vol. 8, pp. 47–57 (2016)

    Google Scholar 

  9. Leonardo González-Ruiz, J., Raymundo Marcial-Romero, J., Hernández, J.A., De Ita. C.: Computing the clique-width of polygonal tree graphs. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) Advances in Soft Computing, pp. 449–459, Springer International Publishing, Cham (2017)

    Google Scholar 

  10. Marijn, J., Heule, H., Szeider, S.: A SAT Approach to clique-width. In: ACM Transactions on Computational Logic pp. 318–334. Springer, Berlin (2013)

    Google Scholar 

  11. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101, 77–114 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leonardo González-Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Ruiz, J.L., Marcial-Romero, J.R., Hernández, J.A., De-Ita, G. (2021). Approximate the Clique-Width of a Graph Using Shortest Paths. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89820-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89819-9

  • Online ISBN: 978-3-030-89820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics