Skip to main content

Merging and Annotating Teeth and Roots from Automated Segmentation of Multimodal Images

  • Conference paper
  • First Online:
Multimodal Learning for Clinical Decision Support (ML-CDS 2021)

Abstract

This paper aims to combine two different imaging techniques to create an accurate 3D model representation of root canals and dental crowns. We combine Cone-Beam Computed Tomography (CBCT) (root canals) and Intra Oral Scans (IOS) (dental crowns). The Root Canal Segmentation algorithm relies on a U-Net architecture with 2D sliced images from CBCT scans as its input. The segmentation task achieved an F1-score of 0.84. The IOS segmentation (Dental Model Segmentation) algorithm and Universal Labeling and Merging (ULM) algorithm use a multi-view approach for 3D shape analysis. The approach consists of acquiring views of the 3D object from different viewpoints and extract surface features such as the normal vectors. The generated 2D images are then analyzed via a 2D convolutional neural networks (U-Net) for segmentation or classification tasks. The segmentation task on IOS achieved an accuracy of 0.9. The ULM algorithm classifies the jaws between upper and lower and aligns them to a template and labels each crown and root with the ‘Universal Numbering System’ proposed by the ‘American Dental Association’. The ULM task achieve an F1-score of 0.85. Merging and annotation of CBCT and IOS imaging modalities will help guide clinical decision support and quantitative treatment planning for specific teeth, implant placement, root canal treatment, restorative procedures, or biomechanics of tooth movement in orthodontics.

Supported by NIDCR R01 DE024450.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlbrecht, C.A., et al.: Three-dimensional characterization of root morphology for maxillary incisors. PLoS One 12(6), e0178728 (2017). https://doi.org/10.1371/journal.pone.0178728

  2. American Dental Association Universal Numbering System. https://radiopaedia.org/articles/american-dental-association-universal-numbering-system. Accessed 5 July 2021

  3. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV workshops), pp. 1626–1633. IEEE (2011)

    Google Scholar 

  4. Berrendero, S., Salido, M., Valverde, A., Ferreiroa, A., Pradíes, G.: Influence of conventional and digital intraoral impressions on the fit of cad/cam-fabricated all-ceramic crowns. Clin. Invest. 20(9), 2403–2410 (2016)

    Google Scholar 

  5. Boubolo, L., et al.: Flyby CNN: a 3D surface segmentation framework. In: Medical Imaging 2021: Image Processing. vol. 11596, p. 115962B. International Society for Optics and Photonics (2021)

    Google Scholar 

  6. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711. IEEE (2010)

    Google Scholar 

  7. Citing slicer. https://www.slicer.org/w/index.php?title=CitingSlicer&oldid=63090

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Dumont, M., et al.: Patient specific classification of dental root canal and crown shape. In: International Workshop on Shape in Medical Imaging, pp. 145–153. Springer (2020)

    Google Scholar 

  10. Elhaddaoui, R, et al.: Resorption of maxillary incisors after orthodontic treatment-clinical study of risk factors. Int. Orthod. 14, 48–64. (2016). https://doi.org/10.1016/j.ortho.2015.12.015

  11. Dental model segmentation. https://github.com/DCBIA-OrthoLab/fly-by-cnn

  12. Root canal segmentation. https://github.com/RomainUSA/CBCT_seg

  13. Universal labeling and merging. https://github.com/DCBIA-OrthoLab/fly-by-cnn/blob/master/src/py/labeling.py, https://github.com/DCBIA-OrthoLab/fly-by-cnn/tree/master/src/py/PSCP

  14. Ioshida, M, et al.: Accuracy and reliability of mandibular digital model registration with use of the mucogingival junction as the reference. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 127(4), 351–360 (2018). https://doi.org/10.1016/j.oooo.2018.10.003

  15. Kamble, R.H., et al.: Stress distribution pattern in a root of maxillary central incisor having various root morphologies: a finite element study. Angle Orthod. 82, 799–805 (2012). https://doi.org/10.2319/083111-560.1

  16. Kanezaki, A., et al.: Rotationnet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5010–5019 (2018)

    Google Scholar 

  17. Ko, C.C., et al.: Machine learning in orthodontics: application review. Craniof. Growth Ser. 56, 117–135 (2020). http://hdl.handle.net/2027.42/153991

  18. Kwak, G.H., et al.: Automatic mandibular canal detection using a deep convolutional neural network. Sci. Rep. 10, 5711 (2020). https://doi.org/10.1038/s41598-020-62586-8

  19. Liu, M., Yao, F., Choi, C., Sinha, A., Ramani, K.: Deep learning 3D shapes using alt-az anisotropic 2-sphere convolution. In: International Conference on Learning Representations (2018)

    Google Scholar 

  20. Lupi, J.E., et al.: Prevalence and severity of apical root resorption and alveolar bone loss in orthodontically treated adults. Am. J. Orthod. Dentofacial. Orthop. 109(1), 28–37 (1996). https://doi.org/10.1016/s0889-5406(96)70160-9

  21. Ma, C., Guo, Y., Yang, J., An, W.: Learning multi-view representation with ISTM for 3-D shape recognition and retrieval. IEEE Trans. Multimedia 21(5), 1169–1182 (2018)

    Article  Google Scholar 

  22. Machado, J., Pires, P., Santos, T., Neves, A., Lopes, R., Visconti, M.A.: Root canal segmentation in cone-beam computed tomography. Braz. J. Oral Sci. 18, e191627 (2019). DOIurl10.20396/bjos.v18i0.8657328

    Google Scholar 

  23. Marques, L.S., et al.: Severe root resorption in orthodontic patients treated with the edgewise method: prevalence and predictive factors. Am. J. Orthod. Dentofacial. Orthop. 137, 384–388 (2010) https://doi.org/10.1016/j.ajodo.2008.04.024

  24. Marques, L.S., et al.: Severe root resorption and orthodontic treatment: clinical implications after 25 years of follow-up. Am. J. Orthod. Dentofac. Orthop. 139, S166–5169 (2011). https://doi.org/10.1016/j.ajodo.2009.05.032

  25. Ming-Kuei, H.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  26. Oyama, K., et al.: Effects of root morphology on stress distribution at the root apex. Eur. J. Orthod. 29, 113–117 (2007). https://doi.org/10.1093/ejo/cjl043

  27. Paul, A., et al.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006). https://www.itksnap.org

  28. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  29. Ribera, N., et al.: Shape variation analyzer: a classifier for temporomandibular joint damaged by osteoarthritis. In: Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950, p. 1095021. International Society for Optics and Photonics (2019)

    Google Scholar 

  30. Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  32. Sfeir, R., Michetti, J., Chebaro, B., Diemer, F., Basarab, A., Kouamé, D.: Dental root canal segmentation from super-resolved 3D cone beam computed tomography data. In: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 1–2 (2017). https://doi.org/10.1109/NSSMIC.2017.8533054

  33. Shah, N., Bansal, N., Logani, A.: Recent advances in imaging technologies in dentistry. World J. Radiol. 6(10), 794 (2014)

    Article  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  35. Styner, M., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 2006(1071), 242 (2006)

    Google Scholar 

  36. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  37. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions on Graphics (TOG) 36(4), 1–11 (2017)

    Article  Google Scholar 

  38. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  39. Xu, X., et al.: 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans. Vis. Comput. Graph. 2019 25(7), 2336–2348. (2019) https://doi.org/10.1109/TVCG.2018.2839685

  40. Zichun, Y., et al.: CBCT image segmentation of tooth-root canal based on improved level set algorithm. In: Proceedings of the 2020 International Conference on Computers, Information Processing and Advanced Education (CIPAE 2020), pp. 42–51. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3419635.3419654

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Cevidanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deleat-Besson, R. et al. (2021). Merging and Annotating Teeth and Roots from Automated Segmentation of Multimodal Images. In: Syeda-Mahmood, T., et al. Multimodal Learning for Clinical Decision Support. ML-CDS 2021. Lecture Notes in Computer Science(), vol 13050. Springer, Cham. https://doi.org/10.1007/978-3-030-89847-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89847-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89846-5

  • Online ISBN: 978-3-030-89847-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics