Skip to main content

Quantitative and Qualitative Investigations into Trusted Execution Environments

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2021)

Abstract

I propose to develop a quantitative and qualitative framework to integrate a Trusted Execution Environment (TEE) into the pipeline of secure computation by combining it with other cryptographic primitives. Such a hybrid framework will utilize mathematical and statistical modeling techniques to decide how to combine TEE and cryptographic primitives and evaluate the potential for performance improvement by moving secure computation processes into or out of a TEE. Ideally, I will be able to determine when to combine TEEs with pure-cryptography techniques to improve performance for a task, instead of simply using either method alone and only achieving suboptimal performance. The final goal is to design and develop an actionable decision-making framework, and utilize it to optimize the secure computation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradley, T.: Intel takes confidential computing to another level with ‘ice lake’ security capabilities. Forbes (2020)

    Google Scholar 

  2. Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. John Wiley & Sons, Hoboken (2015)

    MATH  Google Scholar 

  3. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Floating-point homomorphic encryption. IACR Cryptol. ePrint Arch. 2016, 421 (2016)

    Google Scholar 

  4. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch. 2016, 86 (2016)

    Google Scholar 

  5. Draper, N.R., Smith, H.: Applied Regression Analysis, vol. 326. John Wiley & Sons, Hoboken (1998)

    MATH  Google Scholar 

  6. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on intel SGX. In: Proceedings of the 10th European Workshop on Systems Security, pp. 1–6 (2017)

    Google Scholar 

  7. Han, S., Zhao, S., Li, Q., Ju, C.H., Zhou, W.: PPM-HDA: privacy-preserving and multifunctional health data aggregation with fault tolerance. TIFS 11(9), 1940–1955 (2015)

    Google Scholar 

  8. Jung, T., Han, J., Li, X.Y.: PDA: semantically secure time-series data analytics with dynamic user groups. TDSC 15(2), 260–274 (2018)

    Google Scholar 

  9. Liu, D., Yan, Z., Ding, W., Atiquzzaman, M.: A survey on secure data analytics in edge computing. IEEE Internet Things J. 6(3), 4946–4967 (2019)

    Article  Google Scholar 

  10. Mofrad, S., Zhang, F., Lu, S., Shi, W.: A comparison study of intel SGX and AMD memory encryption technology. In: ACM HASP, pp. 1–8 (2018)

    Google Scholar 

  11. Shi, E., Chan, H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS. Internet Society (2011)

    Google Scholar 

  12. Tan, B.H.M., et al.: Efficient private comparison queries over encrypted databases using fully homomorphic encryption with finite fields. In: IEEE TDSC (2020)

    Google Scholar 

  13. Tramer, F., Boneh, D.: Slalom: Fast, verifiable and private execution of neural networks in trusted hardware. In: ICLR (2018)

    Google Scholar 

  14. Valovich, F., Aldà, F.: Computational differential privacy from lattice-based cryptography. In: Kaczorowski, J., Pieprzyk, J., Pomykała, J. (eds.) NuTMiC 2017. LNCS, vol. 10737, pp. 121–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76620-1_8

    Chapter  Google Scholar 

  15. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: exploiting synchronisation bugs in intel SGX enclaves. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 440–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Karl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karl, R. (2021). Quantitative and Qualitative Investigations into Trusted Execution Environments. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M. (eds) Security and Privacy in Communication Networks. SecureComm 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 399. Springer, Cham. https://doi.org/10.1007/978-3-030-90022-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90022-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90021-2

  • Online ISBN: 978-3-030-90022-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics