Skip to main content

An Efficient Post-Quantum PKE from RLWR with Simple Security Proof

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2021)

Abstract

In this paper, we propose a public-key encryption scheme based on the Ring Learning With Rounding (RLWR) problem. Our scheme is seen as RLWR based variant of Saber (NIST PQC standardization round 3 candidate scheme). The design motivation is to overcome the very involved security proofs of LWR based public-key encryption schemes. To simplify the previous very involved security proofs, we introduce an intermediate problem which is at least as hard as RLWE problem. In contradiction to the previous LWR based schemes, our construction shares simple and intuitive security proof. We first present an IND-CPA public-key encryption scheme, and then apply a variant of the Fujisaki–Okamoto transforms to create a CCA- secure KEM. Our parameterization of the final KEM and the reference implementation shows that the performance of our scheme is comparable with the NIST PQC standardization round 3 candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a real \(x\in \mathbb {R}\), \(\lceil x\rfloor \) denotes the nearest integer to x. q and p are ring modulus such that \(p<q\), mostly we require p|q.

References

  1. NIST (2020). https://csrc.nist.gov/projects/post-quantum-cryptography

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press (May 1996)

    Google Scholar 

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343. USENIX Association (August 2016)

    Google Scholar 

  4. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE to LWR. IACR Cryptol. ePrint Arch. 2016, 589 (2016)

    Google Scholar 

  5. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4

    Chapter  Google Scholar 

  6. Avanzi, R., et al.: CRYSTALS-kyber. submission to the NIST post-quantum cryptography standardization project. NIST National Institute of Standards and Technology (2020)

    Google Scholar 

  7. Baan, H., et al.: Round5: compact and fast post-quantum public-key encryption. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 83–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_5

    Chapter  Google Scholar 

  8. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_1

    Chapter  MATH  Google Scholar 

  9. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  10. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_9

    Chapter  MATH  Google Scholar 

  11. Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1006–1018. ACM (2016)

    Google Scholar 

  12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press (June 2013)

    Google Scholar 

  13. Chung, C.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C., Yang, B.: NTT multiplication for NTT-unfriendly rings new speed records for saber and NTRU on cortex-m4 and AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 159–188 (2021)

    Article  Google Scholar 

  14. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information: attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_12

    Chapter  Google Scholar 

  15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  16. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  17. Jan-Pieter D’Anvers, S.S.R., Karmakar, A., Vercauteren, F.: SABER: Submission to the NIST post-quantum cryptography standardization project. NIST National Institute of Standards and Technology (2020)

    Google Scholar 

  18. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the Quantum Random Oracle Model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    Chapter  Google Scholar 

  19. Jin, Z., Zhao, Y.: Optimal key consensus in presence of noise. Cryptology ePrint Archive, Report 2017/1058 (2017). http://eprint.iacr.org/2017/1058

  20. Liu, F.-H., Wang, Z.: Rounding in the rings. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 296–326. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_11

    Chapter  Google Scholar 

  21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  22. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press (May/June 2009)

    Google Scholar 

  23. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_12

    Chapter  MATH  Google Scholar 

  24. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 461–473. ACM Press (June 2017)

    Google Scholar 

  25. Poppelmann, T., et al.: NewHope - submission to the NIST post-quantum cryptography standardization project. NIST National Institute of Standards and Technology (2019)

    Google Scholar 

  26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (May 2005)

    Google Scholar 

  27. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (November 1994)

    Google Scholar 

  28. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_24

    Chapter  Google Scholar 

  29. Zhang, Z., et al.: NTRU - technical report, national institute of standards and technology. NIST National Institute of Standards and Technology (2020)

    Google Scholar 

Download references

Acknowledgement

Mingsheng Wang is supported by the Shandong Provincial Key Research and Development Program under Grant Number 2019JZZY020127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parhat Abla .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Proof of Lemma 3.4

Proof

We show the lemma by contradiction. Namely, we show that if there is an algorithm \(\mathcal {A}\) that can solve the problem \( R\text{- }\mathsf {LWR}\text{- }\mathsf {AE}_{n,p,q,\chi }\), then we can construct a simulator \(\mathsf {Sim}\) which solves the RLWR challenge with the same advantage. Our construction of \(\mathsf {Sim}\) is as follows:

  • \(\mathsf {Sim}(a,b)\)

    On input the pair \((a,b) \in R_q \times R_p\) of RLWR challenge, it gives the pair \((\lceil a\rfloor _{q\rightarrow p}, b)\) to the algorithm \(\mathcal {A}\). If \(\mathcal {A}\) outputs 1 (mean that the input pair \((\lceil a\rfloor _{q\rightarrow p}, b)\) is from the \( R\text{- }\mathsf {LWR}\text{- }\mathsf {AE}_{n,p,q,\chi }\) distribution), then \(\mathsf {Sim}\) also outputs 1 to mean that (ab) is from the \(R\text{- }\mathsf {LWR}_{n,p,q,\chi }\) distribution. Otherwise, if the \(\mathcal {A}\) outputs 0 (mean that the input pair is from a uniform distribution over \(R_p\times R_p\)), then \(\mathsf {Sim}\) also outputs 0 to mean that the pair (ab) is from uniform distribution over \(R_q\times R_p\).

Note that showing the following two statements suffices for the lemma: (1) if the input pair (ab) is from uniform distribution over \(R_q\times R_p\), then from \(\mathcal {A}\)’s view the pair \((\lceil a\rfloor _{q\rightarrow p}, b)\) is from the uniform distribution over \(R_p\times R_p\), (2) if the input pair (ab) is from \(R\text{- }\mathsf {LWR}_{n,p,q,\chi }\) distribution, then from \(\mathcal {A}\)’s view the pair \((\lceil a\rfloor _{q\rightarrow p}, b)\) is a sample from the distribution \( R\text{- }\mathsf {LWR}\text{- }\mathsf {AE}_{n,p,q,\chi }\).

The statement (1) is straight from the fact the 2p|q and the definition of the rounding function \(\lceil *\rfloor _{q\rightarrow p}\), namely the rounding procedure maps a uniform element in \(R_q\) to a uniform element in \(R_p\).

Next we show (2), if \(b = \lceil a \cdot s\rfloor _{q\rightarrow p}\) for the \(a\xleftarrow {\$} R_q\) and an element \(s \in R_q\), then we prove that \(b = \lceil (\frac{q}{p} a'+ u) \cdot s\rfloor _{q\rightarrow p}\) for a uniform \(a' := \lceil a\rfloor _{q\rightarrow p}\), and a uniform ring element \(u = a - \frac{q}{p}a'\) whose coefficients are in \([\frac{q}{2p}, \frac{q}{2p})\), where the uniformity is taken over the uniformity of \(a\in R_q\). Note that the uniformity of \(a'\) is by a same argument as the argument of the statement (1), and it’s easy to see that the coefficients of u in \([\frac{q}{2p}, \frac{q}{2p})\). Therefore, we now show uniformity of u. In other words, for any \(u_0 \in [\frac{q}{2p}, \frac{q}{2p})\), we show that \(\mathsf {Pr}_a[u = u_0] = \left( \frac{p}{q}\right) ^n\), that is

$$\begin{aligned} \mathsf {Pr}_a[u = u_0]&= \mathsf {Pr}_a[ a = \frac{q}{p}a' + u_0] \\&= \sum _{a_p \in R_p} \mathsf {Pr}_a[ a = \frac{q}{p}a' + u_0 \wedge a' = a_p] \\&= \sum _{a_p \in R_p} \frac{1}{q^n} = \left( \frac{p}{q}\right) ^n, \end{aligned}$$

where the second equality is by the union bound; the third equality is by the uniformity of a over \(R_q\). This completes the proof.    \(\square \)

1.2 A.2 Proof of Lemma 3.7

Proof

We show the lemma by two steps: (1) we show that the advantage of \(\mathcal {A}\) in \(\mathsf {Game}_2\) is no larger than that of an intermediate game \(\mathsf {Game}_3'\) we introduced, and (2) from the view of \(\mathcal {A}\) the two games \(\mathsf {Game}_3'\) and \(\mathsf {Game}_3\) is indistinguishable if the \(R\text{- }\mathsf {LWR}_{2n,p,q,\mathsf {Bin}_{\beta }}\) problem is hard. The difference between the \(\mathsf {Game}_2\) and the intermediate game \(\mathsf {Game}_3'\) is the way they generate b and \(c_1\) as follow

$$ b\xleftarrow {\$} R_p, c_1 = \lceil ( \frac{q}{p}b+ u)\cdot r\rfloor _{q\rightarrow p} \text{, } \text{ and } b\xleftarrow {\$} R_q, c_1 = \lceil b\cdot r\rfloor _{q\rightarrow p} $$

Note that (1) is follows from the Lemma 3.4 that the advantage of \(\mathcal {A}\) in \(\mathsf {Game}_2\) is no larger than that of \(\mathsf {Game}_3'\). Furthermore, an analogue reduction as in the proof of Lemma 3.6 shows (2). This completes the proof.

   \(\square \)

1.3 A.3 Proof of Lemma 3.6

Proof

The \(\mathsf {Game}_2\) is different from the \(\mathsf {Game}_1\) by the way the \(\mathsf {pk}\) generated, that b is generated by computing the rounding function \(\lceil a\cdot s\rfloor _{q\rightarrow p}\) for some secret \(s\in R_q\), but it is sampled uniformly over the ring \(R_p\) in the \(\mathsf {Game}_2\). The lemma follows if from the view of \(\mathcal {A}\) the two games are indifferent. We show this by contradiction. Assume that \(\mathcal {A}\) can distinguish these two games, then we construct an algorithm \(\mathsf {Sim}\) as follows that can solve the \(R\text{- }\mathsf {LWR}_{n,p,q,\mathsf {Bin}_{\beta }}\).

  • \(\mathsf {Sim}(a,b)\)

    On input the pair \((a,b) \in R_q \times R_p\) of \(R\text{- }\mathsf {LWR}_{n,p,q,\mathsf {Bin}_{\beta }}\) challenge, it simulate every step in \(\mathsf {Game}_1\)( or \(\mathsf {Game}_2\)) for \(\mathcal {A}\) except the step2 and step 4 that it uses (ab) instead of sampling or computing them.

Note that if the pair (ab) is from \(R\text{- }\mathsf {LWR}_{n,p,q,\mathsf {Bin}_{\beta }}\), then \(\mathsf {Sim}\) exactly simulated the \(\mathsf {Game}_1\) for \(\mathcal {A}\), if the pair (ab) is from uniform distribution over \(R_q\times R_p\), then \(\mathsf {Sim}\) exactly simulated the \(\mathsf {Game}_2\) for \(\mathcal {A}\). Therefore, if \(\mathcal {A}\) can distinguishes the two games with noticeable probability, then \(\mathsf {Sim}\) can solve \(R\text{- }\mathsf {LWR}_{n,p,q,\mathsf {Bin}_{\beta }}\) problem with same probability. This is contradicts the lemma assumption that \(R\text{- }\mathsf {LWR}_{n,p,q,\mathsf {Bin}_{\beta }}\) problem is hard. Thus from the view of \(\mathcal {A}\) the two games are indifferent, and the lemma follows.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abla, P., Wang, M. (2021). An Efficient Post-Quantum PKE from RLWR with Simple Security Proof. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M. (eds) Security and Privacy in Communication Networks. SecureComm 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 399. Springer, Cham. https://doi.org/10.1007/978-3-030-90022-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90022-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90021-2

  • Online ISBN: 978-3-030-90022-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics