Skip to main content

Barnette’s Conjecture Through the Lens of the \(Mod_{k}P\) Complexity Classes

  • Conference paper
  • First Online:
Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13034))

  • 263 Accesses

Abstract

In circa 2006, Feder & Subi established that Barnette’s 1969 conjecture, which postulates that all cubic bipartite polyhedral graphs are Hamiltonian, is true if and only if the Hamiltonian cycle decision problem for this class of graphs is polynomial time solvable (assuming \(\mathcal {P} \ne \mathcal {NP}\)). Here, we bridge the truth of Barnette’s conjecture with the hardness of a related set of decision problems belonging to the \(Mod_{k}P\) complexity classes (not known to contain \(\mathcal {NP}\)), where we are tasked with deciding if an integer k fails to evenly divide the Hamiltonian cycle count of a cubic bipartite polyhedral graph. In particular, we show that Barnette’s conjecture is true if there exists a polynomial time procedure for this decision problem when k can be any arbitrarily selected prime number. However, to illustrate the barriers for utilizing this result to prove Barnette’s conjecture, we also show that the aforementioned decision problem is \(Mod_{k}P\)-complete \(\forall k \in \left( 2 \mathbb {N}_{>0}+1\right) \), and more generally, that unless \(\mathcal {NP} = \mathcal {RP}\), no polynomial time algorithm can exist if k is not a power of two.

This work was supported by a Grant-in-Aid for JSPS Research Fellow (18F18117 to R. D. Barish) from the Japan Society for the Promotion of Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793 (2004)

    Article  MathSciNet  Google Scholar 

  2. Barnette, D.: Conjecture 5. In: Tutte, W.T. (ed.) Recent Problems in Combinatorics, p. 343. Academic Press, New York (1969)

    Google Scholar 

  3. Batagelj, V.: Inductive definition of two restricted classes of triangulations. Discrete Math. 52(2–3), 113–121 (1984)

    Article  MathSciNet  Google Scholar 

  4. Beigel, R., Gill, J., Hertramp, U.: Counting classes: thresholds, parity, mods, and fewness. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 49–57. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52282-4_31

    Chapter  Google Scholar 

  5. Bosák, J.: Hamiltonian lines in cubic graphs. In: Fiedler, M. (ed.) Proceedings of the International Seminar on Graph Theory and Applications, Rome, July 1966; Appearing in Theory of Graphs, pp. 35–46. Gordon & Breach, New York (1967)

    Google Scholar 

  6. Brightwell, G., Winkler, P.: Counting linear extensions. Order 8(3), 225–242 (1991)

    Article  MathSciNet  Google Scholar 

  7. Cahit, I.: Algorithmic proof of Barnette’s conjecture. arXiv:0904.3431, pp. 1–13 (2009)

  8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158 (1971)

    Google Scholar 

  9. Feder, T., Subi, C.: On Barnette’s conjecture. Rep. TR06-015, Electronic Colloquium on Computational Complexity (ECCC) (2006)

    Google Scholar 

  10. Fleischner, H., Jackson, B.: A note concerning some conjectures on cyclically 4-edge connected 3-regular graphs. Ann. Discrete Math. 41, 171–178 (1989)

    Article  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

    Article  MathSciNet  Google Scholar 

  12. Goldschlager, L.M., Parberry, I.: On the construction of parallel computers from various bases of boolean functions. Theoret. Comput. Sci. 43(1), 43–58 (1986)

    Article  MathSciNet  Google Scholar 

  13. Grunbaum, B.: Polytopes, graphs, and complexes. Bull. Amer. Math. Soc. 76, 1131–1201 (1970)

    Article  MathSciNet  Google Scholar 

  14. Hertrampf, U.: Relations among Mod-classes. Theoret. Comput. Sci. 74(3), 325–328 (1990)

    Article  MathSciNet  Google Scholar 

  15. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of the 10th Annual Structure in Complexity Theory Conference (SCT), pp. 134–147 (1995)

    Google Scholar 

  16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.)Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  17. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, New York (1967)

    Google Scholar 

  18. Levin, L.A.: Universal search problems. Probl. Peredachi Inf. 9(3), 265–266 (1973)

    Google Scholar 

  19. Liśkiewicz, M., Ogihara, M., Toda, S.: The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theoret. Comput. Sci. 304(1–3), 129–156 (2003)

    Article  MathSciNet  Google Scholar 

  20. Lu, X.: A note on 3-connected cubic planar graphs. Discrete Math. 310(13–14), 2054–2058 (2010)

    Article  MathSciNet  Google Scholar 

  21. McCuaig, W.: Edge reductions in cyclically k-connected cubic graphs. J. Combin. Theory Ser. B 56(1), 16–44 (1992)

    Article  MathSciNet  Google Scholar 

  22. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

    Article  Google Scholar 

  23. Papadimitriou, C.H., Zachos, S.K.: Two remarks on the power of counting. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 269–275. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0036487

    Chapter  Google Scholar 

  24. Pirzada, S., Shah, M.A.: Construction of Barnette graphs whose large subgraphs are non-Hamiltonian. Acta Univ. Sapientiae Math. 11(2), 363–370 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Plesník, J.: The NP-completeness of the Hamiltonian cycle problem in bipartite cubic planar graphs. Acta Math. Univ. Comenian. 42–43, 271–273 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Seta, T.: The complexities of puzzles, Cross Sum and their Another Solution Problems (ASP). Senior Thesis, Department of Infomation Science, the Faculty of Science, the University of Tokyo (2002)

    Google Scholar 

  27. Steinitz, E.: Polyeder und raumeinteilungen. Encyklopadie der mathematischen Wissenschaften. Bd. III-1B, Hft. 9, pp. 1–139 (1922)

    Google Scholar 

  28. Tutte, W.T.: On Hamiltonian circuits. J. London Math. Soc. s1–21(2), 98–101 (1946)

    Article  MathSciNet  Google Scholar 

  29. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  30. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MathSciNet  Google Scholar 

  31. Valiant, L.G.: Completeness for parity problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 1–8. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_1

    Chapter  Google Scholar 

  32. Valiant, L.G.: Accidental algorithms. In: Proceedings of the 47th Annual Symposium on Foundations of Computer Science (FOCS), pp. 509–517 (2006)

    Google Scholar 

  33. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theoret. Comput. Sci. 47(1), 85–93 (1986)

    Article  MathSciNet  Google Scholar 

  34. Zankó, V.: #P-completeness via many-one reductions. Int. J. Found. Comput. Sci. 2(1), 77–82 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Barish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barish, R.D., Suyama, A. (2021). Barnette’s Conjecture Through the Lens of the \(Mod_{k}P\) Complexity Classes. In: Akiyama, J., Marcelo, R.M., Ruiz, MJ.P., Uno, Y. (eds) Discrete and Computational Geometry, Graphs, and Games. JCDCGGG 2018. Lecture Notes in Computer Science(), vol 13034. Springer, Cham. https://doi.org/10.1007/978-3-030-90048-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90048-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90047-2

  • Online ISBN: 978-3-030-90048-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics