Skip to main content

Hamiltonicity of Graphs on Surfaces in Terms of Toughness and Scattering Number – A Survey

  • Conference paper
  • First Online:
Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13034))

  • 293 Accesses

Abstract

This paper aims to survey Hamiltonicity of graphs on surfaces, including stronger (e.g. Hamiltonian-connectedness) and weaker (e.g. containing Hamiltonian paths and spanning trees with certain conditions) properties. Toughness and scattering number conditions are necessary conditions for graphs to have such properties. Since every k-connected graph on a surface \(F^2\) satisfies some toughness and scattering number condition, we can expect that “every k-connected graph on a surface \(F^2\) satisfies the property \({ \mathcal {P}}\)”. We explain which triple \((k, F^2, { \mathcal {P}})\) makes the statement true from the viewpoint of toughness and scattering number of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This statement is related to Malkevitch’s conjecture [66] stating that every 4-connected planar graph G contains a cycle of length l for any \(3 \le l \le |V(G)|\), possibly except for \(l = 4\). See also [21].

  2. 2.

    Their proof depends on the Four Color Theorem, which was still unsolved at that time. Without using the Four Color Theorem, the same result was proven by Goodey and Rosenfeld [48] with additional conditions and then finally, by Fleischner [40]. The most general result in this direction is the following due to Paulraja [82]; any 3-connected cubic graph is prism-Hamiltonian.

  3. 3.

    This is related to the map color theorem, see [84, 85].

  4. 4.

    Ding [31] gave a complete structure of \(K_{2,t}\)-minor-free graphs.

References

  1. Archdeacon, D., Hartsfield, N., Little, C.H.C.: Nonhamiltonian triangulations with large connectivity and representativity. J. Combin. Theory Ser. B 68, 45–55 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asano, T., Kikuchi, S., Saito, N.: A linear algorithm for finding Hamiltonian cycles in \(4\)-connected maximal planar graphs. Discrete Appl. Math. 7, 1–15 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnette, D.W.: \(2\)-connected spanning subgraphs of planar \(3\)-connected graphs. J. Combin. Theory Ser. B 61, 210–216 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnette, D.W.: \(3\)-trees in polyhedral maps. Israel J. Math. 79, 251–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnette, D.W.: Decomposition theorems for the torus, projective plane and Klein bottle. Discrete Math. 70, 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnette, D.W.: Trees in polyhedral graphs. Canad. J. Math. 18, 731–736 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs - a survey. Graphs Combin. 22, 1–35 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer, D., Broersma, H., Veldman, H.J.: Not every \(2\)-tough graph is hamiltonian. Discrete Appl. Math. 99, 317–321 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biebighauser, D.P., Ellingham, M.N.: Prism-hamiltonicity of triangulations. J. Graph Theory 57, 181–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biedl, T., Kindermann, P.: Finding Tutte paths in linear time. Preprint (2019). https://arxiv.org/abs/1812.04543

  11. Böhme, T., Maharry, J., Mohar, B.: \(K_{a, k}\)-minors in graphs of bounded tree-width. J. Combin. Theory Ser. B 86, 135–147 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Böhme, T., Mohar, B., Thomassen, C.: Long cycles in graphs on a fixed surface. J. Combin. Theory Ser. B 85, 338–347 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brinkmann, G., Souffriau, J., Van Cleemput, N.: On the strongest form of a theorem of Whitney for Hamiltonian cycles in plane triangulations. J. Graph Theory 83, 78–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brinkmann, G., Zamfirescu, C.T.: Polyhedra with few 3-cuts are hamiltonian. Electron. J. Combin. 26, # P1.39 (2019)

    Google Scholar 

  15. Broersma, H.J.: On some intriguing problems in hamiltonian graph theory - a survey. Discrete Math. 251, 47–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brunet, R., Ellingham, M.N., Gao, Z., Metzlar, A., Richter, R.B.: Spanning planar subgraphs of graphs on the torus and Klein bottle. J. Combin. Theory Ser. B 65, 7–22 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brunet, R., Nakamoto, A., Negami, S.: Every \(5\)-connected triangulation of the Klein bottle is Hamiltonian. Yokohama Math. J. 47, 239–244 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Brunet, R., Richter, R.B.: Hamiltonicity of \(5\)-connected toroidal triangulations. J. Graph Theory 20, 267–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, C.: Any maximal planar graph with only one separating triangle is Hamiltonian. J. Comb. Optim. 7, 79–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, G., Egawa, Y., Kawarabayashi, K., Mohar, B., Ota, K.: Toughness of \(K_{a, t}\)-minor-free graphs, Electron. J. Combin. 18, # P148 (2011)

    Google Scholar 

  21. Chen, G., Fan, G., Yu, X.: Cycles in \(4\)-connected planar graphs. Eur. J. Combin. 25, 763–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, G., Sheppardson, L., Yu, X., Zang, W.: The circumference of a graph with no \(K_{3, t}\)-minor. J. Combin. Theory Ser. B 96, 822–845 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chiba, N., Nishizeki, T.: A theorem on paths in planar graphs. J. Graph Theory 10, 449–450 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for \(4\)-connected planar graphs. J. Algorithms 10, 187–211 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chudnovsky, M., Reed, B., Seymour, P.: The edge-density for \(K_{2, t}\) minors. J. Combin. Theory Ser. B 101, 18–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 5, 215–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 306, 910–917 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cui, Q.: A note on circuit graphs. Electron. J. Discrete Math. 17, # N10 (2010)

    Google Scholar 

  29. Dean, N.: Lecture at Twenty-First Southeastern Conference on Combinatorics, Graph Theory and Computing. Boca Raton, Florida, February 1990

    Google Scholar 

  30. Dillencourt, M.B.: Hamiltonian cycles in planar triangulations with no separating triangles. J. Graph Theory 14, 31–39 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding, G.: Graphs without large \(K_{2, n}\)-minors. Preprint (2020). https://arxiv.org/abs/1702.01355

  32. Ellingham, M.N.: Spanning paths, cycles and walks for graphs on surfaces. Congr. Numer. 115, 55–90 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Ellingham, M.N., Gao, Z.: Spanning trees in locally planar triangulations. J. Combin. Theory Ser. B 61, 178–198 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ellingham, M.N., Kawarabayashi, K.: \(2\)-connected spanning subgraphs with low maximum degree in locally planar graphs. J. Combin. Theory Ser. B 97, 401–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ellingham, M.N., Marshall, E.A., Ozeki, K., Tsuchiya, S.: A characterization of \(K_{2,4}\)-minor-free graphs. SIAM J. Discrete Math. 30, 955–975 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ellingham, M.N., Marshall, E.A., Ozeki, K., Tsuchiya, S.: Hamiltonicity of planar graphs with a forbidden minor. J. Graph Theory 90, 459–483 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ellingham, M.N., Zha, X.: Toughness, trees, and walks. J. Graph Theory 33, 125–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Enomoto, H., Jackson, B., Katerinis, P., Saito, A.: Toughness and the existence of \(k\)-factors. J. Graph Theory 9, 87–95 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Enomoto, H., Iida, T., Ota, K.: Connected spanning subgraphs of \(3\)-connected planar graphs. J. Combin. Theory Ser. B 68, 314–323 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fleischner, H.: The prism of a \(2\)-connected, planar, cubic graph is hamiltonian. Ann. Discrete Math. 41, 141–170 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fujisawa, J., Nakamoto, A., Ozeki, K.: Hamiltonian cycles in bipartite toroidal graphs with a partite set of degree four vertices. J. Combin. Theory Ser. B 103, 46–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gao, Z.: \(2\)-connected coverings of bounded degree in \(3\)-connected graphs. J. Graph Theory 20, 327–338 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gao, Z., Richter, R.B.: \(2\)-walks in circuit graphs. J. Combin. Theory Ser. B 62, 259–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gao, Z., Richter, R.B., Yu, X.: \(2\)-walks in \(3\)-connected planar graphs. Australas. J. Combin. 11, 117–122 (1995)

    MathSciNet  MATH  Google Scholar 

  45. Gao, Z., Richter, R.B., Yu, X.: Erratum to: \(2\)-walks in \(3\)-connected planar graphs. Australas. J. Combin. 36, 315–316 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Gao, Z., Wormald, N.C.: Spanning eulerian subgraphs of bounded degree in triangulations. Graphs Combin. 10, 123–131 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Goddard, W., Plummer, M.D., Swart, H.C.: Maximum and minimum toughness of graphs of small genus. Discrete Math. 167(168), 329–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Goodey, P.R., Rosenfeld, M.: Hamiltonian circuits in prisms over certain simple \(3\)-polytopes. Discrete Math. 21, 229–235 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gouyou-Beauchamps, D.: The Hamiltonian circuit problem is polynomial for \(4\)-connected planar graphs. SIAM J. Comput. 11, 529–539 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Grünbaum, B.: Polytopes, graphs, and complexes. Bull. Amer. Math. Soc. 76, 1131–1201 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  51. Harant, J.: Toughness and nonhamiltonicity of polyhedral graphs. Discrete Math. 113, 249–253 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hasanvand, M.: Spanning closed walks with bounded maximum degrees of graphs on surfaces. Preprint (2017). https://arxiv.org/abs/1712.00125

  53. Helden, G.: Each maximal planar graph with exactly two separating triangles is Hamiltonian. Discrete Appl. Math. 155, 1833–1836 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ikegami, D., Maezawa, S., Zamfirescu, C.T.: On 3-polytopes with non-Hamiltonian prisms. J. Graph Theory 97, 569–577 (2021)

    Article  MathSciNet  Google Scholar 

  55. Jackson, B., Wormald, N.C.: \(k\)-walks of graphs. Australas. J. Combin. 2, 135–146 (1990)

    MathSciNet  MATH  Google Scholar 

  56. Jackson, B., Yu, X.: Hamilton cycles in plane triangulations. J. Graph Theory 41, 138–150 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Jung, H.A.: On a class of posets and the corresponding comparability graphs. J. Combin. Theory Ser. B 24, 125–133 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kaiser, T., Ryjáček, Z., Král’, D., Rosenfeld, M., Voss, H.-J.: Hamilton cycles in prisms. J. Graph Theory 56, 249–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kawarabayashi, K.: A theorem on paths in locally planar triangulations. Eur. J. Combin. 25, 781–784 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kawarabayashi, K., Nakamoto, A., Ota, K.: \(2\)-connected \(7\)-coverings of \(3\)-connected graphs on surfaces. J. Graph Theory 43, 26–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kawarabayashi, K., Nakamoto, A., Ota, K.: Subgraphs of graphs on surfaces with high representativity. J. Combin. Theory Ser. B 89, 207–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kawarabayashi, K., Ozeki, K.: 4-connected projective-planar graphs are hamiltonian-connected. J. Combin. Theory Ser. B 112, 36–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kawarabayashi, K., Ozeki, K.: 5-connected toroidal graphs are Hamiltonian-connected. SIAM J. Discrete Math. 30, 112–140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kawarabayashi, K., Ozeki, K.: Spanning closed walks and TSP in 3-connected planar graphs. J. Combin. Theory Ser. B 109, 1–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Lu, X., West, D.B.: A new proof that \(4\)-connected planar graphs are Hamiltonian-connected. Discuss. Math. Graph Theory 36, 555–564 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Malkevitch, J.: Polytopal graphs. In: Selected Topics in Graph Theory, vol. 3, pp. 169–188. Academic Press, New York (1988)

    Google Scholar 

  67. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press, Baltimore (2001)

    MATH  Google Scholar 

  68. Nakamoto, A., Oda, Y., Ota, K.: \(3\)-trees with few vertices of degree 3 in circuit graphs. Discrete Math. 309, 666–672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. Nakamoto, A., Ozeki, K.: Hamiltonian cycles in bipartite quadrangulations on the torus. J. Graph Theory 69, 143–151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Nakamoto, A., Ozeki, K.: Spanning trees with few leaves in graphs on surfaces. In: Preparation

    Google Scholar 

  71. Nash-Williams, C.S.J.A.: Unexplored and semi-explored territories in graph theory. In: New Directions in the Theory of Graphs, pp. 149–186. Academic Press, New York (1973)

    Google Scholar 

  72. Nishizeki, T.: A \(1\)-tough nonhamiltonian maximal planar graph. Discrete Math. 30, 305–307 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  73. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Annals of Discrete Mathematics, vol. 32. North-Holland, Amsterdam (1988)

    Google Scholar 

  74. Ota, K., Ozeki, K.: Spanning trees in \(3\)-connected \(K_{3, t}\)-minor-free graphs. J. Combin. Theory Ser. B 102, 1179–1188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Owens, P.J.: Non-hamiltonian maximal planar graphs with high toughness. Tatra Mt. Math. Publ. 18, 89–103 (1999)

    MathSciNet  MATH  Google Scholar 

  76. Ozeki, K.: A shorter proof of Thomassen’s theorem on Tutte paths in plane graphs. SUT J. Math. 50, 417–425 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Ozeki, K.: A spanning tree with bounded maximum degrees of graphs on surfaces. SIAM J. Discrete Math. 27, 422–435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  78. Ozeki, K., Van Cleemput, N., Zamfirescu, C.T.: Hamiltonian properties of polyhedra with few 3-cuts - a survey. Discrete Math. 341, 2646–2660 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  79. Ozeki, K., Vràna, P.: \(2\)-edge-Hamiltonian connectedness of planar graphs. Eur. J. Combin. 35, 432–448 (2014)

    Article  MATH  Google Scholar 

  80. Ozeki, K., Yamashita, T.: Spanning trees - a survey. Graphs Combin. 27, 1–26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Ozeki, K., Zamfirescu, C.T.: Every \(4\)-connected graph with crossing number \(2\) is hamiltonian. SIAM J. Discrete Math. 32, 2783–2794 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  82. Paulraja, P.: A characterization of hamiltonian prisms. J. Graph Theory 17, 161–171 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  83. Plummer, M.D.: Problem in infinite and finite sets. In: Colloquia Mathematica Societatis János Bolyai, vol. 10, pp. 1549–1559. North-Holland, Amsterdam (1975)

    Google Scholar 

  84. Ringel, G.: Das Geschlecht des vollständigen paaren Graphen. Abh. Math. Sem. Univ. Hamburg 28, 139–150 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  85. Ringel, G.: Der vollständige paare Graph auf nichtorientierbaren Flächen. J. Reine Angew. Math. 220, 88–93 (1965)

    MathSciNet  MATH  Google Scholar 

  86. Rosenfeld, M.: On spanning subgraphs of \(4\)-connected planar graphs. Graphs Combin. 25, 279–287 (1989)

    MathSciNet  MATH  Google Scholar 

  87. Rosenfeld, M., Barnette, D.: Hamiltonian circuits in certain prisms. Discrete Math. 5, 389–394 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  88. Sanders, D.P.: On hamilton cycles in certain planar graphs. J. Graph Theory 21, 43–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  89. Sanders, D.P.: On paths in planar graphs. J. Graph Theory 24, 341–345 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  90. Sanders, D.P., Zhao, Y.: On \(2\)-connected spanning subgraphs with low maximum degree. J. Combin. Theory Ser. B 74, 64–86 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  91. Sanders, D.P., Zhao, Y.: On spanning trees and walks of low maximum degree. J. Graph Theory 36, 67–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  92. Schmeichel, E.F., Bloom, G.S.: Connectivity, genus, and the number of components in vertex-deleted subgraphs. J. Combin. Theory Ser. B 27, 198–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  93. Schmid, A., Schmidt, J.M.: Computing \(2\)-walks in polynomial time. ACM Trans. Algorithms 14, 18 (2018). Art. 22

    Google Scholar 

  94. Schmid, A., Schmidt, J.M.: Computing Tutte paths. Preprint (2017). https://arxiv.org/abs/1707.05994

  95. Spacapan, S.: A counterexample to prism-hamiltonicity of \(3\)-connected planar graphs. J. Combin. Theory Ser. B 146, 364–371 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  96. Spacapan, S.: Polyhedra without cubic vertices are prism-hamiltonian. Preprint (2021). https://arxiv.org/abs/2104.04266v1

  97. Tait, P.G.: Remarks on the colouring of maps. Proc. R. Soc. London 10, 729 (1880)

    MATH  Google Scholar 

  98. Thomas, R., Yu, X.: \(4\)-connected projective-planar graphs are Hamiltonian. J. Combin. Theory Ser. B 62, 114–132 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  99. Thomas, R., Yu, X.: Five-connected toroidal graphs are hamiltonian. J. Combin. Theory Ser. B 69, 79–96 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  100. Thomas, R., Yu, X., Zang, W.: Hamilton paths in toroidal graphs. J. Combin. Theory Ser. B 94, 214–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  101. Thomassen, C.: A theorem on paths in planar graphs. J. Graph Theory 7, 169–176 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  102. Thomassen, C.: Trees in triangulations. J. Combin. Theory Ser. B 60, 56–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  103. Tutte, W.T.: A theorem on planar graphs. Trans. Am. Math. Soc. 82, 99–116 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  104. Tutte, W.T.: Bridges and Hamiltonian circuits in planar graphs. Aequationes Math. 15, 1–33 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  105. Tutte, W.T.: On hamiltonian circuits. J. London Math. Soc. 2, 98–101 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  106. Yu, X.: Disjoint paths, planarizing cycles, and spanning walks. Trans. Am. Math. Soc. 349, 1333–1358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  107. Whitney, H.: A theorem on graphs. Ann. Math. 32, 378–390 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  108. Win, S.: On a connection between the existence of \(k\)-trees and the toughness of a graph. Graphs Combin. 5, 201–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would thank the referees for carefully reading the paper and helpful comments. This work was supported by JSPS KAKENHI Grant Number JP18K03391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Ozeki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ozeki, K. (2021). Hamiltonicity of Graphs on Surfaces in Terms of Toughness and Scattering Number – A Survey. In: Akiyama, J., Marcelo, R.M., Ruiz, MJ.P., Uno, Y. (eds) Discrete and Computational Geometry, Graphs, and Games. JCDCGGG 2018. Lecture Notes in Computer Science(), vol 13034. Springer, Cham. https://doi.org/10.1007/978-3-030-90048-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90048-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90047-2

  • Online ISBN: 978-3-030-90048-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics