Abstract
This study aims to find a model for guaranteeing the security of big data information using a bibliometric analysis approach. The data of this research are 710 international indexed scientific articles (Scopus) in the form of (Article, Book Chapter and Conference Paper). Data was collected using the keyword (“security information”) AND (“assurance big data”) and was limited to 2016 to 2020. Bibliometric indicators, such as citations, were used to identify the overall theme structure. The data analysis phase was carried out with the analysis tools of VOSviewer and NVivo Plus 12 software. The use of VOSviewer will map the main theme trends in the research area so that it can find new literature. The main theme mappings are then integrated in the Nvivo Plus12 software analysis tool, to produce large theme visualizations. The results show that the author, institution, and theme keywords infographics that: Research studies on information security and assurance for big data have an increasing trend in the number of articles in the last five years; The study of information security and assurance for big data based on network analysis reveals four important themes of concern to the authors, meaning intelligence, privacy, access, and smart cities. In addition, the Government’s big data information security model pays more attention to data security and privacy, public, social, and trends through a cyber physical social system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. J. Internet Serv. Appl. 6(1), 1–15 (2015). https://doi.org/10.1186/s13174-015-0041-5
Arifin, F., Herman, T.: The influene of E-Learning. TARBIYA: J. Educ. Muslim Soc.53(9), 45–52 (2017). file:///C:/Users/User/Downloads/fvm939e.pdf
Barham, H., Daim, T.: Identifying critical issues in smart city big data project implementation. In: Proceedings of the 1st ACM/EIGSCC Symposium on Smart Cities and Communities, SCC 2018 (2018). https://doi.org/10.1145/3236461.3241967
Bucher, T.: Want to be on the top? Algorithmic power and the threat of invisibility on Facebook. New Media Soc. 14(7), 1164–1180 (2012). https://doi.org/10.1177/1461444812440159
Chen, H., Chiang, R.H.L., Storey, V.C.: Quarterly36(4), 1165–1188 (2012)
Hixon, E., Buckenmeyer, J., Barczyk, C., Feldman, L., Zamojski, H.: Beyond the early adopters of online instruction: motivating the reluctant majority. Internet High. Educ. 15(2), 102–107 (2012). https://doi.org/10.1016/j.iheduc.2011.11.005
Huda, M.: Paper-Big Data Emerging Technology: Insights into Innovative Environment for Online Learning Re… Big Data Emerging Technology: Insights into Innovative Environment for Online Learning Resources Miftachul Huda Pardimin Atmotiyoso Maragustam Siregar. 13(1), 23 (2018). https://doi.org/10.3991/ijet.v13i01.6990
Khan, H.M., Khan, A., Jabeen, F., Rahman, A.U.: Privacy preserving data aggregation with fault tolerance in fog-enabled smart grids. Sustainable Cities and Society, 64 (2021). https://doi.org/10.1016/j.scs.2020.102522
Kitchin, R.: Big Data, new epistemologies and paradigm shifts. Big Data Soc. 1(1), 1–12 (2014). https://doi.org/10.1177/2053951714528481
Lalitha, K., Radhakrishnamurty, R.: Response of alanine, tyrosine & leucine aminotransferases to dietary pyridoxine & protein in rat tissues. Indian J. Exp. Biol. 13(2), 149–152 (1975)
Litchfield, C., Kavanagh, E., Osborne, J., Jones, I.: Social media and the politics of gender, race and identity: the case of Serena Williams. Eur. J. Sport Soc. 15(2), 154–170 (2018). https://doi.org/10.1080/16138171.2018.1452870
Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online social networks. ACM Trans. Knowl. Discov. Data 5(1), 1–30 (2010). https://doi.org/10.1145/1870096.1870102
Nasution, M.K.M.: Social network mining: a discussion. J. Phys. Conf. Ser. 1235(1) (2019). https://doi.org/10.1088/1742-6596/1235/1/012111
Omar, A., Kalulu, D., Alijani, G.: management of innovative E-learning environments. Acad. Educ. Leader. J. 15(3), 37 (2011)
Puzziferro, M.: Online technologies self-efficacy and self-regulated learning as predictors of final grade and satisfaction in college-level online courses. Int. J. Phytorem. 21(1), 72–89 (2008). https://doi.org/10.1080/08923640802039024
Ririh, K.R., Laili, N., Wicaksono, A., Tsurayya, S.: Studi Komparasi dan Analisis Swot Pada Implementasi Kecerdasan Buatan (Artificial Intelligence) di Indonesia. Jurnal Teknik Industri, 15(2), 122–133 (2020). https://ejournal.undip.ac.id/index.php/jgti/article/view/29183
Sayedahmed, H.A.M., Mohamed, E., Hefny, H.A.: Computational intelligence techniques in vehicle to everything networks: a review. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds.) AISI 2020. AISC, vol. 1261, pp. 803–815. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58669-0_71
Swara, G.Y., Zirwan, A.: Aplikasi Pencarian Barbershop Berbasis Android. Jurnal Teknoif, 6(2), 74–80 (2018). https://doi.org/10.21063/jtif.2018.v6.2.74-80
Taylor, J.B., Waxman, J.P., Richter, S.J., Shultz, S.J.: Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. Br. J. Sports Med. 49(2), 79–87 (2015). https://doi.org/10.1136/bjsports-2013-092358
Zoonen, L.: Performance and participation in the Panopticon: instruments for civic engagement with urban surveillance technologies. In: Jacobs, G., Suojanen, I., Horton, K.E., Bayerl, P.S. (eds.) International Security Management. ASTSA, pp. 243–254. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-42523-4_17
Viitanen, J., Kingston, R.: Smart cities and green growth: outsourcing democratic and environmental resilience to the global technology sector. Environ Plan A 46(4), 803–819 (2014). https://doi.org/10.1068/a46242
Yue, H.: Mapping the intellectual structure by Co-word: a case of international management science. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds.) WISM 2012. LNCS, vol. 7529, pp. 621–628. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33469-6_77
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nurmandi, A., Kurniawan, D., Misran, Salahudin (2021). A Meta-analysis of Big Data Security: How the Government Formulates a Model of Public Information and Security Assurance into Big Data. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2021 - Late Breaking Posters. HCII 2021. Communications in Computer and Information Science, vol 1499. Springer, Cham. https://doi.org/10.1007/978-3-030-90179-0_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-90179-0_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90178-3
Online ISBN: 978-3-030-90179-0
eBook Packages: Computer ScienceComputer Science (R0)