Skip to main content

Machine Learning Classification for Blood Glucose Performances Using Insulin Sensitivity and Respiratory Scores in Diabetic ICU Patients

  • Conference paper
  • First Online:
Advances in Visual Informatics (IVIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13051))

Included in the following conference series:

  • 1295 Accesses

Abstract

Diabetes Mellitus (DM) patients with acute respiratory failure in the Intensive Care Unit (ICU) are susceptible to hyperglycaemia with adverse outcome of mortality. Clinically, Partial Pressure of Oxygen over a Fraction of Inspired Oxygen (P/F) scores is use as an indicator for acute respiratory failure and studies have shown that Insulin Sensitivity (SI) can be used as the glycaemic control biomarker for DM patients. Since the elevation of blood glucose in ICU patients is linked to the progression of the acute respiratory system, this preliminary study initiates the combination of SI, P/F, and DM status as the main predictors for machine learning classification. This assessment was done to identify which classification models and predictors between insulin sensitivity (SI), (P/F) scores, and diabetic status will give higher accuracy on Blood Glucose (BG) performance with 7 types of classifier models. In total, 5684 total inputs from 3 predictors extracted from 76 ICU patients were split into 80:20 ratio for training and test sets with five-fold cross-validations. BG performances using three predictors from training vs. test data show that the k-Nearest Neighbor and Neural Network classifiers showed that the highest accuracies achieved were 54.1% and 54.5%, respectively. The sensitivity and specificity evaluated for both model’s robustness demonstrated the possibility of using k-Nearest Neighbor and Neural Network for future BG performance prediction. Based on the model’s robustness increment result, 8% vs. 12% and 10% vs. 4% shows a possibility that SI, P/F scores, and DM can be utilized together as an input to classify glycemic level using both classifier models with a larger dataset from respiratory failures patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

1. References

  1. McCowen, K.C., Malhotra, A., Bistrian, B.R.: Stress-induced hyperglycemia. Crit. Care Clin. 17, 107–124 (2001)

    Article  Google Scholar 

  2. Dungan, K.M., Braithwaite, S.S., Preiser, J.C.: Stress hyperglycaemia (2009)

    Google Scholar 

  3. Preiser, J.-C. (ed.): The Stress Response of Critical Illness: Metabolic and Hormonal Aspects. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27687-8

    Book  Google Scholar 

  4. Marik, P.E., Bellomo, R.: Stress hyperglycemia: an essential survival response! Crit Care 17, 305 (2013)

    Article  Google Scholar 

  5. Lim, B., et al.: Clinical characteristics and risk factors for severe COVID-19 infections in Malaysia: a nationwide observational study. Lancet Reg. Health - West. Pac. 4, 100055 (2020)

    Article  Google Scholar 

  6. D.G Of Health: From the Desk of the Director-General of Health Malaysia Kenyataan Akhbar KPK 31 Disember 2020 – Situasi Semasa Jangkitan Penyakit di Malaysia (2021). https://kpkesihatan.com/2020/03/11/kenyataan-akhbar-kpk-11-mac-2020-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia/

  7. D.G Of Health: From the Desk of the Director-General of Kenyataan Akhbar KPK 13 Julai 2021 – Situasi Semasa Jangkitan Penyakit Coronavirus (2021)

    Google Scholar 

  8. Zheng, X.y., Guan, W.j., Zhong, N.s.: Clinical characteristics of COVID-19 in developing countries of western pacific: low case-fatality rate unraveled. Lancet Reg. Health - West. Pac. 6, 100073 (2021)

    Google Scholar 

  9. Ling, T.L., Har, L.C., Nor, M.R.M., Ismail, N.I., Ismail, W.N.W.: Malaysian Registry of Intensive Care Report (2016)

    Google Scholar 

  10. Edriss, H., Selvan, K., Sigler, M., Nugent, K.: Glucose levels in patients with acute respiratory failure requiring mechanical ventilation. J. Intensive Care Med. 32, 578–584 (2017)

    Article  Google Scholar 

  11. Ardigo, D., Valtuena, S., Zavaroni, I., Baroni, M.C., Delsignore, R.: Pulmonary complications in diabetes mellitus: the role of glycemic control. Curr. Drug Targets Inflamm. Allergy 3, 455–458 (2004)

    Article  Google Scholar 

  12. Abu-Samah, A., Razak, A.A., Razak, N.N., Suhaimi, F.M., Jamaludin, U.: The correlation of model-based insulin sensitivity and respiratory P/F score. In: Ibrahim, F., Usman, J., Ahmad, M.Y., Hamzah, N. (eds.) ICIBEL 2019. IP, vol. 81, pp. 54–62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65092-6_6

    Chapter  Google Scholar 

  13. Logette, E., et al.: A machine-generated view of the role of blood glucose levels in the severity of COVID-19. Front. Public Health 9, 1–53 (2021). https://doi.org/10.3389/fpubh.2021.695139

  14. Villar, J., et al.: Assessment of PaO2/FiO2 for stratification of patients with moderate and severe acute respiratory distress syndrome. BMJ Open 5, e006812 (2015)

    Article  Google Scholar 

  15. Holzinger, U., Kitzberger, R., Fuhrmann, V., Funk, G.C., Madl, C., Ratheiser, K.: Correlation of calculated indices of insulin resistance (QUICKI and HOMA) with the euglycaemic hyperinsulinaemic clamp technique for evaluating insulin resistance in critically ill patients. Eur. J. Anaesthesiol. 24, 966–970 (2007)

    Article  Google Scholar 

  16. Muniyappa, R., Madan, R.: Assessing insulin sensitivity and resistance in humans. In: Endotext, pp. 1–21 (2000)

    Google Scholar 

  17. Abu-Samah, A., et al.: Model-based glycemic control in a Malaysian intensive care unit: performance and safety study. Med. Devices Evid. Res. 12, 215–226 (2019)

    Article  Google Scholar 

  18. Chase, J.G., et al.: Insulin sensitivity, its variability and glycemic outcome: a model-based analysis of the difficulty in achieving tight glycemic control in critical care. In: IFAC (2011)

    Google Scholar 

  19. Blakemore, A., et al.: Model-based insulin sensitivity as a sepsis diagnostic in critical care. J. Diabetes Sci. Technol. 2, 468–477 (2008)

    Article  Google Scholar 

  20. Stewart, K.W., et al.: Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis. Ann. Intensive Care 6(1), 1 (2016). https://doi.org/10.1186/s13613-016-0125-9

    Article  Google Scholar 

  21. Abu-Samah, A., et al.: Model-based insulin-nutrition administration for glycemic control in Malaysian critical care: first pilot trial. In: Ibrahim, F., Usman, J., Ahmad, M.Y., Hamzah, N., Teh, S.J. (eds.) ICIBEL 2017. IP, vol. 67, pp. 189–196. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7554-4_33

    Chapter  Google Scholar 

  22. Evans, A., et al.: Stochastic targeted (STAR) glycemic control: design, safety, and performance. J. Diabetes Sci. Technol. 6, 102–115 (2012)

    Article  Google Scholar 

  23. Fisk, L.M., Le Compte, A.J., Shaw, G.M., Penning, S., Desaive, T., Chase, J.G.: STAR development and protocol comparison. IEEE Trans. Biomed. Eng. 59, 3357–3364 (2012)

    Article  Google Scholar 

  24. Sagun, G., Gedik, C., Ekiz, E., Karagoz, E., Takir, M., Oguz, A.: The relation between insulin resistance and lung function: a cross sectional study. BMC Pulm. Med. 15, 1–8 (2015)

    Article  Google Scholar 

  25. Lin, J., et al.: A physiological intensive control insulin-nutrition-glucose (ICING) model validated in critically ill patients. Comput. Methods Programs Biomed. 102, 192–205 (2011)

    Article  Google Scholar 

  26. Hann, C.E., et al.: Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput. Methods Programs Biomed. 77, 259–270 (2005)

    Article  Google Scholar 

  27. Brink, H., Richards, J., Fetherolf, M.: Real-World Machine Learning. Manning Publications Co., Greenwich (2016)

    Google Scholar 

  28. Singh, N., Singh, P., Bhagat, D.: A rule extraction approach from support vector machines for diagnosing hypertension among diabetics. Expert Syst. Appl. 130, 188–205 (2019)

    Article  Google Scholar 

  29. Yahyaoui, A., Yumuşak, N.: Decision support system based on the support vector machines and the adaptive support. Biomed. Res. 29, 1474–1480 (2018)

    Article  Google Scholar 

  30. Haque, F., et al.: Performance analysis of conventional machine learning algorithms for diabetic sensorimotor polyneuropathy severity classification. Diagnostics 11, 801 (2021)

    Article  Google Scholar 

  31. Razak, A.A., Abu-Samah, A., Razak, N.N., Baharudin, S., Suhaimi, F.M., Jamaludin, U.: Endogenous glucose production variation assessment for Malaysian ICU patients based on diabetic status. In: Ibrahim, F., Usman, J., Ahmad, M.Y., Hamzah, N. (eds.) ICIBEL 2019. IP, vol. 81, pp. 129–136. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65092-6_15

    Chapter  Google Scholar 

Download references

Acknowledgement

Thank you to Ministry of Education for funding our study via Fundamental Research Grant Scheme (FRGS) 2019 (Grant Code No: FRGS/1/2019/STG05/UNITEN/02/1), Universiti Tenaga Nasional, and Universitas Sriwijaya with UNSRI Grant (Grant Code: 2021005UNSRI). The data were collected under a collaborative study with Universiti Malaya Medical Centre under ethics number MECID No. 20171115754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normy Norfiza Razak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdul Razak, A., Partan, R.U., Razak, N.N., Abu-Samah, A., Nor Hisham Shah, N., Hasan, M.S. (2021). Machine Learning Classification for Blood Glucose Performances Using Insulin Sensitivity and Respiratory Scores in Diabetic ICU Patients. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2021. Lecture Notes in Computer Science(), vol 13051. Springer, Cham. https://doi.org/10.1007/978-3-030-90235-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90235-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90234-6

  • Online ISBN: 978-3-030-90235-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics