Skip to main content

A Lattice Reduction Algorithm Based on Sublattice BKZ

  • Conference paper
  • First Online:
Provable and Practical Security (ProvSec 2021)

Abstract

We present m-SubBKZ reduction algorithm that outputs a reduced lattice basis, containing a vector shorter than the original BKZ. The work is based on the properties of sublattices and the Gaussian Heuristic of the full lattice and sublattices. By theoretical analysis and simulation, we suggest a BKZ call on the sublattice is possible to produce a short vector close to the shortest vector in the full lattice. The key idea of our algorithm is to extract multiple sublattices from the preprocessed lattice, restricting the context in which a lattice reduction solver is called. The full basis is then updated with vectors from the reduced basis of each sublattice. The new algorithm improves on the efficiency of the original BKZ algorithm and the BKZ 2.0 variant. We show the experimental results on random lattices to compare the length of vectors produced by our algorithm and original BKZ and BKZ 2.0. On the 180-dimension basis, the m-SubBKZ reaches 47% of the output of BKZ and 46% of BKZ 2.0. The ratio drops with the dimension increasing. The effect is more oblivious with smaller blocks. The results show that the new algorithm is able to produce a shorter vector at a relatively low cost compared with previous algorithms, and the improvements are especially explicit for lattices of high dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)

    Article  MathSciNet  Google Scholar 

  2. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

    Article  MathSciNet  Google Scholar 

  3. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1468–1480. ACM-SIAM, Austin (2010)

    Google Scholar 

  4. Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In: EUROCRYPT 2018, Part I, LNCS, vol. 10820, pp. 125–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_5

  5. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Annalen 261, 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  6. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction, revisited - filling the gaps in SVP approximation. In: Advances in Cryptology - CRYPTO 2020, LNCS, vol. 12171, pp. 274–295. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_10

  7. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: ASIACRYPT 2011, LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

  8. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Advances in Cryptology - EUROCRYPT 2016, LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30

  9. Albrecht, M., Bai, S., Fouque, P.A., Kirchner, P., Stehle, D., Wen, W.: Faster enumeration-based lattice reduction : root hermite factor k1/(2k) time kk/8+o(k). In: Advances in Cryptology - CRYPTO 2020. LNCS, vol. 12171, pp. 186–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_7

  10. Nguyen, P.Q., Vallee, B.: The LLL Algorithm, Survey and Applications, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1

  11. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Advances in Cryptology - EUROCRYPT 2016, LNCS, vol. 9665, pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_31

  12. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In: STACS 2003, LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_14

  13. Guillaume, H., Pujol, X., Stehle, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Advances in Cryptology - CRYPTO 2011, LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_25

  14. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: 40th ACM STOC, pp. 207–216. ACM Press, Columbia (2008)

    Google Scholar 

  15. The FPLLL development team. FPLLL, a lattice reduction library. https://github.com/fplll/fplll. Accessed 25 May 2021

  16. The FPLLL development team. FPyLLL, a Python interface to fplll. https://github.com/fplll/fpylll. Accessed 25 May 2021

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported by the National Natural Science Foundation of China (No. 61872449, 62032009) and the National Key Research and Development Program of China (No. 2018YFA0704705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, J., Pan, Y., Cheng, Q. (2021). A Lattice Reduction Algorithm Based on Sublattice BKZ. In: Huang, Q., Yu, Y. (eds) Provable and Practical Security. ProvSec 2021. Lecture Notes in Computer Science(), vol 13059. Springer, Cham. https://doi.org/10.1007/978-3-030-90402-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90402-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90401-2

  • Online ISBN: 978-3-030-90402-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics