Abstract
These days stereoscopic cameras are commonly used in daily life, such as the new smartphones and emerging technologies. The quality of the stereo video can be affected by various factors (e.g., blur artifact due to camera/object motion). For solving this issue, several methods are proposed for monocular deblurring, and there are some limited proposed works for stereo content deblurring. This paper presents a novel stereoscopic video deblurring model considering the consecutive left and right video frames. To compensate for the motion in stereoscopic video, we feed consecutive frames from the previous and next frames to the 3D CNN networks, which can help for further deblurring. Also, our proposed model uses the stereoscopic other view information to help for deblurring. Specifically, to deblur the stereo frames, our model takes the left and right stereoscopic frames and some neighboring left and right frames as the inputs. Then, after compensation for the transformation between consecutive frames, a 3D Convolutional Neural Network (CNN) is applied to the left and right batches of frames to extract their features. This model consists of the modified 3D U-Net networks. To aggregate the left and right features, the Parallax Attention Module (PAM) is modified to fuse the left and right features and create the output deblurred frames. The experimental results on the recently proposed Stereo Blur dataset show that the proposed method can effectively deblur the blurry stereoscopic videos.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)
Gong, D., et al.: From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2017)
Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)
Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)
Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2529 (2018)
Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision 127(8), 1106–1125 (2019)
Liu, C., Sun, D.: A bayesian approach to adaptive video super resolution. In: CVPR 2011. IEEE, pp. 209–216 (2011)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1–31 (2011)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)
Pan, L., Dai, Y., Liu, M., Porikli, F.: Simultaneous stereo video deblurring and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4382–4391 (2017)
Xu, L., Jia, J.: Depth-aware motion deblurring. In: 2012 IEEE International Conference on Computational Photography (ICCP). IEEE, pp. 1–8 (2012)
Sellent, A., Rother, C., Roth, S.: Stereo video deblurring. In: European Conference on Computer Vision, pp. 558–575. Springer (2016)
Zhou, S., Zhang, J., Zuo, W., Xie, H., Pan, J., Ren, J.S.: Davanet: stereo deblurring with view aggregation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10 996–11 005 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Wang, L., et al.: Learning parallax attention for stereo image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12 250–12 259 (2019)
Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)
Wu, S., Xu, J., Tai, Y.-W., Tang, C.-K.: Deep high dynamic range imaging with large foreground motions. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 117–132 (2018)
Tassano, M., Delon, J., Veit, T.: Fastdvdnet: towards real-time deep video denoising without flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1354–1363 (2020)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision. IEEE, pp. 2564–2571 (2011)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Middelkamp, A.: Online. Praktische Huisartsgeneeskunde 3(4), 3–3 (2017). https://doi.org/10.1007/s41045-017-0040-y
Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning. PMLR, pp. 7354–7363 (2019)
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Capture the world in 3d., Stereolabs. (n.d.). https://www.stereolabs.com/
Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 261–270 (2017)
Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_32
Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vision 98(2), 168–186 (2012)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Imani, H., Islam, M.B. (2021). Towards Stereoscopic Video Deblurring Using Deep Convolutional Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-90436-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90435-7
Online ISBN: 978-3-030-90436-4
eBook Packages: Computer ScienceComputer Science (R0)