Skip to main content

Towards Stereoscopic Video Deblurring Using Deep Convolutional Networks

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13018))

Included in the following conference series:

  • 1117 Accesses

Abstract

These days stereoscopic cameras are commonly used in daily life, such as the new smartphones and emerging technologies. The quality of the stereo video can be affected by various factors (e.g., blur artifact due to camera/object motion). For solving this issue, several methods are proposed for monocular deblurring, and there are some limited proposed works for stereo content deblurring. This paper presents a novel stereoscopic video deblurring model considering the consecutive left and right video frames. To compensate for the motion in stereoscopic video, we feed consecutive frames from the previous and next frames to the 3D CNN networks, which can help for further deblurring. Also, our proposed model uses the stereoscopic other view information to help for deblurring. Specifically, to deblur the stereo frames, our model takes the left and right stereoscopic frames and some neighboring left and right frames as the inputs. Then, after compensation for the transformation between consecutive frames, a 3D Convolutional Neural Network (CNN) is applied to the left and right batches of frames to extract their features. This model consists of the modified 3D U-Net networks. To aggregate the left and right features, the Parallax Attention Module (PAM) is modified to fuse the left and right features and create the output deblurred frames. The experimental results on the recently proposed Stereo Blur dataset show that the proposed method can effectively deblur the blurry stereoscopic videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)

    Google Scholar 

  2. Gong, D., et al.: From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2017)

    Google Scholar 

  3. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  4. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  5. Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2529 (2018)

    Google Scholar 

  6. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  7. Liu, C., Sun, D.: A bayesian approach to adaptive video super resolution. In: CVPR 2011. IEEE, pp. 209–216 (2011)

    Google Scholar 

  8. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1–31 (2011)

    Article  Google Scholar 

  9. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

    Google Scholar 

  10. Pan, L., Dai, Y., Liu, M., Porikli, F.: Simultaneous stereo video deblurring and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4382–4391 (2017)

    Google Scholar 

  11. Xu, L., Jia, J.: Depth-aware motion deblurring. In: 2012 IEEE International Conference on Computational Photography (ICCP). IEEE, pp. 1–8 (2012)

    Google Scholar 

  12. Sellent, A., Rother, C., Roth, S.: Stereo video deblurring. In: European Conference on Computer Vision, pp. 558–575. Springer (2016)

    Google Scholar 

  13. Zhou, S., Zhang, J., Zuo, W., Xie, H., Pan, J., Ren, J.S.: Davanet: stereo deblurring with view aggregation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10 996–11 005 (2019)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  15. Wang, L., et al.: Learning parallax attention for stereo image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12 250–12 259 (2019)

    Google Scholar 

  16. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  17. Wu, S., Xu, J., Tai, Y.-W., Tang, C.-K.: Deep high dynamic range imaging with large foreground motions. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 117–132 (2018)

    Google Scholar 

  18. Tassano, M., Delon, J., Veit, T.: Fastdvdnet: towards real-time deep video denoising without flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1354–1363 (2020)

    Google Scholar 

  19. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision. IEEE, pp. 2564–2571 (2011)

    Google Scholar 

  20. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  22. Middelkamp, A.: Online. Praktische Huisartsgeneeskunde 3(4), 3–3 (2017). https://doi.org/10.1007/s41045-017-0040-y

    Article  Google Scholar 

  23. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning. PMLR, pp. 7354–7363 (2019)

    Google Scholar 

  24. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  25. Capture the world in 3d., Stereolabs. (n.d.). https://www.stereolabs.com/

  26. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 261–270 (2017)

    Google Scholar 

  27. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_32

    Chapter  Google Scholar 

  28. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vision 98(2), 168–186 (2012)

    Article  MathSciNet  Google Scholar 

  29. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imani, H., Islam, M.B. (2021). Towards Stereoscopic Video Deblurring Using Deep Convolutional Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90436-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90435-7

  • Online ISBN: 978-3-030-90436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics