Skip to main content

Analysis of Macular Thickness Deviation Maps for Diagnosis of Glaucoma

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13018))

Included in the following conference series:

Abstract

There is a growing number of studies showing that analysis of macular parameters provides additional information about ganglion cell loss in glaucoma and compliments traditional markers of glaucoma. In this paper, we develop an image processing pipeline for the macular thickness deviation maps generated by Heidelberg Spectralis optical coherence tomography (OCT) to evaluate the information within the macular measurements for diagnosing glaucoma. Logistic regression is applied to analyze features extracted from the deviation maps and the strength of their relationship with the diagnosis of glaucoma. Our experimental results show that the proportion of regions with thickness significantly below the normative range in the nerve fiber layer thickness deviation maps can be used to detect glaucoma with an accuracy of up to 70.16%. Moreover, the ganglion cell layer deviation maps also possess significant diagnostic ability for detection of glaucoma, which can be combined with the traditional assessments of the optic nerve head and peripapillary retinal nerve fiber layer to improve the reliability of glaucoma diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michelessi, M., et al.: Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst. Rev. 11, 2015 (2015)

    Google Scholar 

  2. Tan, O., et al.: Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmology 116, 2305–2314 (2009)

    Article  Google Scholar 

  3. Miraftabi, A., et al.: Macular SD-OCT outcome measures: Comparison of local structure-function relationships and dynamic range. Investig. Ophthalmol. Vis. Sci. 57, 4815 (2016)

    Article  Google Scholar 

  4. Chen, Z., Wang, Y., Wollstein, G., de Los Angeles Ramos-Cadena, M., Schuman, J., Ishikawa, H.: Macular GCIPL thickness map prediction via time-aware convolutional LSTM. In: Proceedings - International Symposium on Biomedical Imaging (2020)

    Google Scholar 

  5. Raja, H., Hassan, T., Akram, M.U., Werghi, N.: Clinically verified hybrid deep learning system for retinal ganglion cells aware grading of glaucomatous progression. IEEE Trans. Biomed. Eng. 68, 2140–2151 (2021)

    Article  Google Scholar 

  6. Amini, N., Miremadi, S.G., Fazeli, M.: A hierarchical routing protocol for energy load balancing in wireless sensor networks. In: Canadian Conference on Electrical and Computer Engineering (2007)

    Google Scholar 

  7. Ishikawa, H., Stein, D.M., Wollstein, G., Beaton, S., Fujimoto, J.G., Schuman, J.S.: Macular segmentation with optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 46, 2012 (2005)

    Article  Google Scholar 

  8. Amini, N., Vahdatpour, A., Dabiri, F., Noshadi, H., Sarrafzadeh, M.: Joint consideration of energy-efficiency and coverage-preservation in microsensor networks. Wirel. Commun. Mob. Comput. 26, 1086 (2011)

    Google Scholar 

  9. Muhammad, H., et al.: Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects. J. Glaucoma 26, 1086–1094 (2017)

    Article  Google Scholar 

  10. Dey, A., Bandyopadhyay, S.: Automated glaucoma detection using support vector machine classification method. Br. J. Med. Med. Res. 11, 1–12 (2016)

    Article  Google Scholar 

  11. Huang, M.L., Chen, H.Y.: Glaucoma classification model based on GDx VCC measured parameters by decision tree. J. Med. Syst. 34, 1141–1147 (2010)

    Article  Google Scholar 

  12. Sugimoto, K., Murata, H., Hirasawa, H., Aihara, M., Mayama, C., Asaoka, R.: Cross-sectional study: does combining optical coherence tomography measurements using the ‘Random Forest’ decision tree classifier improve the prediction of the presence of perimetric deterioration in glaucoma suspects? BMJ Open 3(10), e003114 (2013)

    Article  Google Scholar 

  13. Balasubramanian, K., Ananthamoorthy, N.P., Gayathridevi, K.: Automatic Diagnosis and Classification of Glaucoma Using Hybrid Features and k -Nearest Neighbor. J. Med. Imaging Heal. Informatics 8, 1598–1606 (2018)

    Article  Google Scholar 

  14. Ayub, J., et al.: Glaucoma detection through optic disc and cup segmentation using K-mean clustering. In: 2016 International Conference on Computing, Electronic and Electrical Engineering, ICE Cube 2016 - Proceedings (2016)

    Google Scholar 

  15. Bambo, M.P., et al.: Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol. BMC Ophthalmol. 20, 1–8 (2020)

    Article  Google Scholar 

  16. Bowd, C., et al.: Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 49, 935 (2008)

    Google Scholar 

  17. Maetschke, S., Antony, B., Ishikawa, H., Wollstein, G., Schuman, J., Garnavi, R.: A feature agnostic approach for glaucoma detection in OCT volumes. PLOS ONE 14(7), e0219126 (2019)

    Article  Google Scholar 

  18. Kaiser, W.X., et al.: Method of assessing human fall risk using mobile systemst. 8,823,526 (2014)

    Google Scholar 

  19. Hood, D.C., Raza, A.S., de Moraes, C.G.V., Liebmann, J.M., Ritch, R.: Glaucomatous damage of the macula. Progr. Retinal Eye Res. 32, 1–21 (2013)

    Article  Google Scholar 

  20. Takayama, K., et al.: A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 53, 6904 (2012)

    Article  Google Scholar 

  21. Mahmoudinezhad, G., et al.: Detection of longitudinal GCIPL change: comparison of two spectral domain optical coherence tomography devices. Am. J. Ophthalmol. 231, 1–10 (2021)

    Article  Google Scholar 

  22. Heidelberg Engineering. Enhanced Features, Enhanced Diagnostics (2020)

    Google Scholar 

  23. Curcio, C.A., Allen, K.A.: Topography of ganglion cells in human retina. J. Comp. Neurol. 300, 1–5 (1990)

    Article  Google Scholar 

  24. Rosin, P.L.: A note on the least squares fitting of ellipses. Pattern Recogn. Lett. 14(10), 799–808 (1993)

    Article  Google Scholar 

  25. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  26. Yousefi, H., Mohammadi, F., Mirian, N., Amini, N.: tuberculosis bacilli identification: a novel feature extraction approach via statistical shape and color models. In: Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (2020)

    Google Scholar 

  27. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  Google Scholar 

  28. Ahmad, S.S.: Glaucoma suspects: a practical approach. Taiwan J. Ophthalmol. 8(2), 74 (2018)

    Article  Google Scholar 

  29. Peng, C.Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002)

    Article  Google Scholar 

  30. Peng, C.-Y.J., So, T.-S.H.: Logistic regression analysis and reporting: a primer. Underst. Stat. 1(1), 31–70 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Amini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, B., Mohammadi, F., Lim, J.S., Forouzesh, N., Ghasemzadeh, H., Amini, N. (2021). Analysis of Macular Thickness Deviation Maps for Diagnosis of Glaucoma. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90436-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90435-7

  • Online ISBN: 978-3-030-90436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics