Abstract
Quantum computing seeks to exploit the properties of quantum mechanics to perform computations at a fraction of the cost compared to the classical computing methods. Recently, quantum methods for machine learning have attracted the interest of researchers. Those methods aim to exploit, in the context of machine learning, the potential benefits that the quantum computers should be able to offer in the near future. A particularly interesting area of research in this direction, investigates the union of quantum machine learning models with Convolutional Neural Networks. In this paper we develop a quantum counterpart of a 3D Convolutional Neural Network for video classification, dubbed Q3D-CNN. This is the first approach for quantum video classification we are aware of.
Our model is based on previously proposed quantum machine learning models, where manipulation of the input data is performed in such a way that a fully quantum-mechanical neural network layer can be realized and used to form a Quantum Convolutional Neural Network. We augment this approach by introducing quantum-friendly operations during data-loading and appropriately manipulating the quantum network. We demonstrate the applicability of the proposed Q3D-CNN in video classification using videos from a publicly available dataset. We successfully classify the test dataset using two and three classes using the quantum network and its classical counterpart.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adcock, J.,et al.: Advances in quantum machine learning. arXiv:1512.02900 December 2015
Allcock, J., Hsieh, C.Y., Kerenidis, I., Zhang, S.: Quantum Algorithms for Feedforward Neural Networks. ACM Trans. Quant. Comput. 1(1), 6:1–6:24 (2020). https://doi.org/10.1145/3411466
Allcock, J., Zhang, S.: Quantum machine learning. Nat. Sci. Rev. 6(1), 26–28 (2019). https://doi.org/10.1093/nsr/nwy149
Behrman, E.C., Nash, L.R., Steck, J.E., Chandrashekar, V.G., Skinner, S.R.: Simulations of quantum neural networks. Inf. Sci. 128(3), 257–269 (2000). https://doi.org/10.1016/S0020-0255(00)00056-6
Cerezo, M., et al.: Variational quantum algorithms. arXiv:2012.09265 (2020)
Chatzis, S.P., Kosmopoulos, D.: A nonparametric bayesian approach toward stacked convolutional independent component analysis. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015
Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019). https://doi.org/10.1038/s41567-019-0648-8
Dang, Y., Jiang, N., Hu, H., Ji, Z., Zhang, W.: Image classification based on quantum k-nearest-neighbor algorithm. Quantum Inf. Process. 17(9), 1–18 (2018). https://doi.org/10.1007/s11128-018-2004-9
Garg, S., Ramakrishnan, G.: Advances in quantum deep learning: an overview. arXiv:2005.04316 May 2020
Gawron, P., Lewiński, S.: Multi-spectral image classification with quantum neural network. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 3513–3516, September 2020. https://doi.org/10.1109/IGARSS39084.2020.9323065
Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach. Intell. 2(1), 1–9 (2020). https://doi.org/10.1007/s42484-020-00012-y
Hernández, H.I.G., Ruiz, R.T., Sun, G.H.: Image classification via quantum machine learning. arXiv:2011.02831 December 2020
Jeswal, S.K., Chakraverty, S.: Recent developments and applications in quantum neural network: a review. Arch. Comput. Methods Eng. 26(4), 793–807 (2018). https://doi.org/10.1007/s11831-018-9269-0
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014
Kerenidis, I., Landman, J., Prakash, A.: Quantum algorithms for deep convolutional neural networks. In: International Conference on Learning Representations, September 2019
Kulkarni, V., Kulkarni, M., Pant, A.: Quantum computing methods for supervised learning. arXiv:2006.12025 June 2020
Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuits. arXiv:2008.07524 August 2020
Materzynska, J., Berger, G., Bax, I., Memisevic, R.: The jester dataset: A large-scale video dataset of human gestures. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 2874–2882. IEEE Computer Society (2019)
Nguyen, N.T., Kenyon, G.T.: Image classification using quantum inference on the d-wave 2x. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–7, November 2018. https://doi.org/10.1109/ICRC.2018.8638596
Niu, X.F., Ma, W.P.: A novel quantum neural network based on multi- level activation function. Laser Phys. Lett. 18(2), 025201 (2021). https://doi.org/10.1088/1612-202X/abd23c
Oh, S., Choi, J., Kim, J.: A tutorial on quantum convolutional neural networks (QCNN). arXiv:2009.09423 September 2020
Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J., Biswas, R.: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 3(3), 030502 (2018). https://doi.org/10.1088/2058-9565/aab859
Schuld, M., Sinayskiy, I., Petruccione, F.: Simulating a perceptron on a quantum computer. Phys. Lett. A 379(7), 660–663 (2015). https://doi.org/10.1016/j.physleta.2014.11.061
Tacchino, F., Barkoutsos, P., Macchiavello, C., Tavernelli, I., Gerace, D., Bajoni, D.: Quantum implementation of an artificial feed-forward neural network. Quantum Sci. Technol. 5(4), 044010 (2020). https://doi.org/10.1088/2058-9565/abb8e4
Tacchino, F., Barkoutsos, P.K., Macchiavello, C., Gerace, D., Tavernelli, I., Bajoni, D.: Variational learning for quantum artificial neural networks. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 130–136, October 2020. https://doi.org/10.1109/QCE49297.2020.00026
Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., Baik, S.W.: Action recognition in video sequences using deep bi-directional LSTM with CNN features. IEEE Access 6, 1155–1166 (2018). https://doi.org/10.1109/ACCESS.2017.2778011
Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feedforward neural networks. npj Quantum Inf. 3(1), 1–8 (2017). https://doi.org/10.1038/s41534-017-0032-4
Wu, Z., Wang, X., Jiang, Y.G., Ye, H., Xue, X.: Modeling spatial-temporal clues in a hybrid deep learning framework for video classification. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 461–470. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2733373.2806222
Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision (ECCV), September 2018
Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015
Zhou, N.-R., Liu, X.-X., Chen, Y.-L., Du, N.-S.: Quantum k-nearest-neighbor image classification algorithm based on K-L transform. Int. J. Theoret. Phys. 60(3), 1209–1224 (2021). https://doi.org/10.1007/s10773-021-04747-7
Zhou, R.: Quantum competitive neural network. Int. J. Theoret. Phys. 49(1), 110 (2009). https://doi.org/10.1007/s10773-009-0183-y
Zhou, R., Ding, Q.: Quantum M-P neural network. Int. J. Theoret. Phys. 46(12), 3209–3215 (2007). https://doi.org/10.1007/s10773-007-9437-8
Acknowledgment
This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program “Competitiveness, Entrepreneurship and Innovation”, under the call “RESEARCH - CREATE - INNOVATE” (project code:T2EDK-00982).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Blekos, K., Kosmopoulos, D. (2021). A Quantum 3D Convolutional Neural Network with Application in Video Classification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-90439-5_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90438-8
Online ISBN: 978-3-030-90439-5
eBook Packages: Computer ScienceComputer Science (R0)