Abstract
We present a new public-key ABE for DFA based on the LWE assumption, achieving security against collusions of a-priori bounded size. Our scheme achieves ciphertext size \(\tilde{O}(\ell + B)\) for attributes of length \(\ell \) and collusion size B. Prior LWE-based schemes has either larger ciphertext size \(\tilde{O}(\ell \cdot B)\), or are limited to the secret-key setting. Along the way, we introduce a new technique for lattice trapdoor sampling, which we believe would be of independent interest. Finally, we present a simple candidate public-key ABE for DFA for the unbounded collusion setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
To facilitate comparison with Waters’ pairing-based scheme, we note that the terms corresponding to \(\mathbf {c}_i\) and \(\mathbf {k}_{u,\sigma }\) there-in are given by:
$$(g_1^{s_{i-1}}, g_1^{s_{i-1} z + s_i w_{x_i}}, g_1^{s_i}), \;\; (g_2^{-\tilde{d}_{u}+zr}, g_2^r, g_2^{-\tilde{d}_{v}+w_{\sigma }r})$$where \(g_1,g_2\) are the respective generators the group \(\mathbb {G}_1,\mathbb {G}_2\) in a bilinear group \(e : \mathbb {G}_1 \times \mathbb {G}_2 \rightarrow \mathbb {G}_T\). We can then compute a pairing-product over these terms to derive \(e(g_1,g_2)^{s_{i-1} \tilde{d}_{u_{i-1}} -s_{i} \tilde{d}_{u_{i}}}\).
- 2.
It seems plausible (with some considerable changes to the scheme and the proof) that we can replace \(\mathsf {cFE}\) for depth \(O(\log Q)\) circuits with an ABE for branching programs of size \(\textsf {poly}(Q)\). The latter can realized from LWE with a polynomial modulus-to-noise ratio [16, 17].
- 3.
Following [22, Section 5.2], we choose each entry of \(\mathbf {R}\) to be 0 with probability 1/2, and \(\pm 1\) each with probability 1/4. This yields \(|\mathbf {R}| = 1\) and \(s_1(\mathbf {R}) = O(\sqrt{m})\) w.h.p. Moreover, \((\mathbf {A},\mathbf {A}\mathbf {R}) \approx _s \text{ uniform }\).
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_22
Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_26
Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic finite automata from \(\sf DLIN\). In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_4
Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learning with errors. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) ICALP 2017, volume 80 of LIPIcs, pp. 36:1–36:13. Schloss Dagstuhl, July 2017
Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_8
Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_31
Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_20
Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_20
Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_21
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008
Gong, J., Waters, B., Wee, H.: ABE for DFA from k-Lin. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_25
Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_10
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545–554. ACM Press, June 2013
Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_23
Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC, pp. 660–670. ACM Press, June 2018
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006. Available as Cryptology ePrint Archive Report 2006/309
Itkis, G., Shen, E., Varia, M., Wilson, D., Yerukhimovich, A.: Bounded-collusion attribute-based encryption from minimal assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 67–87. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_3
Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC\(^{1}\) from k-Lin. J. Cryptol. 33(3), 954–1002 (2019). https://doi.org/10.1007/s00145-019-09335-x
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp. 463–472. ACM Press, October 2010
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27
Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36
Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_14
Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_26
Acknowledgments
I would like to thank Yilei Chen and Vinod Vaikuntanathan for illuminating discussions on lattice trapdoor sampling, as well as the reviewers for meticulous and constructive feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Wee, H. (2021). ABE for DFA from LWE Against Bounded Collusions, Revisited. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13043. Springer, Cham. https://doi.org/10.1007/978-3-030-90453-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-90453-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90452-4
Online ISBN: 978-3-030-90453-1
eBook Packages: Computer ScienceComputer Science (R0)