Abstract
This work constructs an identity based encryption from the ring learning with errors assumption (RLWE), with shorter master public keys and tighter security analysis. To achieve this, we develop three new methods: (1) a new homomorphic equality test method using nice algebraic structures of the rings, (2) a new family of hash functions with natural homomorphic evaluation algorithms, and (3) a new insight for tighter reduction analyses. These methods can be used to improve other important cryptographic tasks, and thus are of general interests.
Particularly, our homomorphic equality test method can derive a new method for packing/unpacking GSW-style encodings, showing a new non-trivial advantage of RLWE over the plain LWE. Moreover, our new insight for tighter analyses can improve the analyses of all the currently known partition-based IBE designs, achieving the best of the both from prior analytical frameworks of Waters (Eurocrypt ’05) and Bellare and Ristenpart (Eurocrypt ’09).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\lambda \) is the security parameter and \(\epsilon \) is the adversary’s advantage in attacking the IBE scheme.
- 2.
- 3.
The plain-LWE schemes usually count how many basic matrices in \(\mathsf {mpk} \), where each matrix is larger than the basic ring vectors of Ring-LWE designs by at least a multiplicative factor of \(O(\lambda )\).
- 4.
We note that \(m^{-1}\) with respect to \(\mathbb {Z}_q\) exists if we choose m and q to be co-prime.
- 5.
We can define the common reference string model, where \(\mathsf {crs} \) is selected according to some sampling algorithm. In this work, the common random string model suffices.
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology. 9(3), 169–203 (2015). https://bitbucket.org/malb/lwe-estimator/src/master/
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Apon, D., Fan, X., Liu, F.-H.: Vector encoding over lattices and its applications. Cryptology ePrint Archive, Report 2017/455 (2017). http://eprint.iacr.org/2017/455
Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in nc1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)
Beame, P.W., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15(4), 994–1003 (1986)
Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof and improved concrete security for waters IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_24
Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_19
Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14
Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_27
Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13
Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_14
Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20
Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor, M. (ed.) ITCS 2014, pp. 1–12. ACM (January 2014)
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016. LNCS, vol. 10032. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6
Döttling, N., Garg, S.: From selective IBE to Full IBE and selective HIBE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13
Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_27
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.), 40th ACM STOC, pp. 197–206. ACM Press (May 2008)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5
Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_23
Katsumata, S.: On the untapped potential of encoding predicates by arithmetic circuits and their applications. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 95–125. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_4
Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_23
Lai, Q., Liu, F.-H., Wang, Z.: Almost tight security in lattices with polynomial moduli – PRF, IBE, all-but-many LTF, and more. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 652–681. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_22
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_1
Nielsen, J.B., Rijmen, V. (eds.): EUROCRYPT 2018. LNCS, vol. 10820. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.), 37th ACM STOC, pp. 84–93. ACM Press (May 2005)
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. In: 17th ACM STOC, pp. 458–463. ACM Press (May 1985)
Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36
Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7
Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_2
Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable random functions via generalized partitioning techniques. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_6
Zhang, J., Chen, Yu., Zhang, Z.: Programmable hash functions from lattices: short signatures and IBEs with small key sizes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 303–332. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_11
Acknowledgement
We would like to thank the anonymous reviewers of TCC 2021 for their insightful advices. Feng-Hao Liu and Zhedong Wang are supported by an NSF Award CNS-1657040 and an NSF Career Award CNS-1942400. Part of this work was done while Zhedong Wang was a postdoc at Florida Atlantic University. Parhat Abla and Han Wang are supported by the National Natural Science Foundation of China under Grant Number NSFC61772516 and the National Key R&D Program of China under Grant Number 2020YFA0712303, and Shandong Provincial Key Research and Development Program under Grant Number 2019JZZY020127. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Abla, P., Liu, FH., Wang, H., Wang, Z. (2021). Ring-Based Identity Based Encryption – Asymptotically Shorter MPK and Tighter Security. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13044. Springer, Cham. https://doi.org/10.1007/978-3-030-90456-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-90456-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90455-5
Online ISBN: 978-3-030-90456-2
eBook Packages: Computer ScienceComputer Science (R0)