Skip to main content

Two-Round Maliciously Secure Computation with Super-Polynomial Simulation

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13042))

Included in the following conference series:

Abstract

We propose the first maliciously secure multi-party computation (MPC) protocol for general functionalities in two rounds, without any trusted setup. Since polynomial-time simulation is impossible in two rounds, we achieve the relaxed notion of superpolynomial-time simulation security [Pass, EUROCRYPT 2003]. Prior to our work, no such maliciously secure protocols were known even in the two-party setting for functionalities where both parties receive outputs. Our protocol is based on the sub-exponential security of standard assumptions plus a special type of non-interactive non-malleable commitment.

At the heart of our approach is a two-round multi-party conditional disclosure of secrets (MCDS) protocol in the plain model from bilinear maps, which is constructed from techniques introduced in [Benhamouda and Lin, TCC 2020].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Running two instances of the same protocol in parallel does not achieve any meaningful security guarantee since nothing prevents one party from using two different inputs in each session.

  2. 2.

    We note that our usage of bilinear group based NIWI does not require any setup phase as the prover can self sample the group. Soundness of NIWI will hold as long as the group is cyclic and of the right order[GOS06b]. Also, our usage of tag-based non-malleable commitment scheme doesn’t require setup as the parties can locally choose their identities.

  3. 3.

    Specifically, we assume (a strengthened form of) sub-exponentially secure non-malleable commitments with respect to commitment.

  4. 4.

    Semi-malicious security is a strengthening of semi-honest security where the adversary follows the specifications of the protocols but can choose the random coins of the corrupted parties arbitrarily.

  5. 5.

    This is needed, for example, to ensure that the hybrid before switching to trapdoor is indistinguishable from the hybrid obtained after switching to trapdoor w.r.t an adversary who was unable to retrieve the Round 2 semi-malicious MPC message in the former hybrid (because of some dishonest behavior in the Round 1). We would like to avoid a scenario where such an adversary is actively trying to maul the honest party’s \(C_i^H\) into its own \(C_i^M\) and therefore distinguishes the latter hybrid from the former one (by successfully retrieving the Round 2 MPC message in the latter but not the former).

References

  1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_16

    Chapter  Google Scholar 

  2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^0\). In: 45th FOCS, pp. 166–175. IEEE Computer Society Press, October 2004

    Google Scholar 

  3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications (extended abstract). In: 20th Annual IEEE Conference on Computational Complexity (CCC’05), pp. 260–274 (2005)

    Google Scholar 

  4. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multikey fhe in the plain model. IACR ePrint Arch. 2020, 180 (2020)

    Google Scholar 

  5. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_10

    Chapter  MATH  Google Scholar 

  6. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_25

    Chapter  Google Scholar 

  7. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16

    Chapter  Google Scholar 

  8. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round mpc from ddh. Cryptology ePrint Archive, Report 2020/170 (2020)

    Google Scholar 

  9. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22

    Chapter  Google Scholar 

  10. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012

    Google Scholar 

  11. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable non-interactive secure computation from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_25

    Chapter  Google Scholar 

  12. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

    Chapter  Google Scholar 

  13. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commitments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_8

    Chapter  Google Scholar 

  14. Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation. Cryptology ePrint Archive, Report 2020/221 (2020)

    Google Scholar 

  15. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20

    Chapter  Google Scholar 

  16. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. Cryptology ePrint Archive, Report 2019/216 (2019)

    Google Scholar 

  17. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27

    Chapter  Google Scholar 

  18. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_4

    Chapter  Google Scholar 

  19. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. J. Cryptology 28(4), 820–843 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: 30th ACM STOC, pp. 151–160. ACM Press, May 1998

    Google Scholar 

  21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

    Google Scholar 

  22. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

    Article  MathSciNet  MATH  Google Scholar 

  23. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6

    Chapter  Google Scholar 

  24. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21

    Chapter  Google Scholar 

  25. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_24

    Chapter  Google Scholar 

  26. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36

    Chapter  Google Scholar 

  27. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    Chapter  Google Scholar 

  28. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_17

    Chapter  Google Scholar 

  29. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simulation in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_6

    Chapter  MATH  Google Scholar 

  30. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum supremacy. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_18

    Chapter  Google Scholar 

  31. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21

    Chapter  Google Scholar 

  32. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)

    Article  MathSciNet  Google Scholar 

  33. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable commitments from time-lock puzzles. In: 2017 IEEE 58th Annual Symposium (FOCS), pp. 576–587 (2017)

    Google Scholar 

  34. Morgan, A., Pass, R., Polychroniadou, A.: Succinct non-interactive secure computation. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 216–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_8

    Chapter  Google Scholar 

  35. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October 1997

    Google Scholar 

  36. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10

    Chapter  Google Scholar 

  37. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_4

    Chapter  Google Scholar 

  38. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L., (ed.) 36th ACM STOC, pp. 242–251. ACM Press, June 2004

    Google Scholar 

  39. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G. (2021). Two-Round Maliciously Secure Computation with Super-Polynomial Simulation. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13042. Springer, Cham. https://doi.org/10.1007/978-3-030-90459-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90459-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90458-6

  • Online ISBN: 978-3-030-90459-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics