Skip to main content

An Anonymous Trace-and-Revoke Broadcast Encryption Scheme

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13083))

Included in the following conference series:

  • 1513 Accesses

Abstract

Broadcast Encryption is a fundamental cryptographic primitive, that gives the ability to send a secure message to any chosen target set among registered users. In this work, we investigate broadcast encryption with anonymous revocation, in which ciphertexts do not reveal any information on which users have been revoked. We provide a scheme whose ciphertext size grows linearly with the number of revoked users. Moreover, our system also achieves traceability in the black-box confirmation model.

Technically, our contribution is threefold. First, we develop a generic transformation of linear functional encryption toward trace-and-revoke systems. It is inspired from the transformation by Agrawal et al. (CCS’17) with the novelty of achieving anonymity. Our second contribution is to instantiate the underlying linear functional encryptions from standard assumptions. We propose a \(\mathsf {DDH}\)-based construction which does no longer require discrete logarithm evaluation during the decryption and thus significantly improves the performance compared to the \(\mathsf {DDH}\)-based construction of Agrawal et al.. In the LWE-based setting, we tried to instantiate our construction by relying on the scheme from Wang et al. (PKC’19) but finally found an attack to this scheme. Our third contribution is to extend the 1-bit encryption from the generic transformation to n-bit encryption. By introducing matrix multiplication functional encryption, which essentially performs a fixed number of parallel calls on functional encryptions with the same randomness, we can prove the security of the final scheme with a tight reduction that does not depend on n, in contrast to employing the hybrid argument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, we use this scheme to send 128-bit session keys or a stream: if an user is in the targeted set then it decrypts correctly and if the user is not in the targeted set then it gets all 0s (and therefore the equivalent of a trivial decryptor which generates 0 all the time).

  2. 2.

    Recently, a more general model of pirate, called pirate distinguisher, have been introduced and considered in [16, 24]. However, as proven in [13], in the bit-encryption setting, such a notion of pirate distinguisher is equivalent to the pirate decoder. In this section, we consider bit-encryption and in the next section about multi-bit encryption, the tracing is reduced to the tracing in the bit-encryption sub schemes. Therefore, we keep using the definition from [4] (adapted to the symmetric-key setting).

  3. 3.

    Note that [4] used Hoeffding’s inequality to ensure that one can efficiently find such distinguishable m and \(m'\). In our case, it is simpler, as \({\mathcal {M}}=\{0,1\}\).

  4. 4.

    In [26], the notation \({\mathbb {Z}}_p^{\ell \times m}\) is used instead of \(\{0, \ldots , p-1\}^{\ell \times m}\). We stress that it should indeed be interpreted as \(\{0,1,\ldots , p-1\}^{\ell \times m}\). In particular, the operation \(\mathbf{x}^t \mathbf{Z}\) in the  algorithm is over \({\mathbb {Z}}\) and not modulo p, as otherwise decryption correctness would not hold.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_20

    Chapter  Google Scholar 

  3. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_21

    Chapter  Google Scholar 

  4. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public trace and revoke from standard assumptions: extended abstract. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2277–2293. ACM Press, October/November 2017. https://doi.org/10.1145/3133956.3134041

  5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  6. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 13–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_2

    Chapter  Google Scholar 

  7. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_4

    Chapter  Google Scholar 

  8. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_22

    Chapter  Google Scholar 

  9. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16

    Chapter  Google Scholar 

  10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  11. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 211–220. ACM Press, October/November 2006. https://doi.org/10.1145/1180405.1180432

  12. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 733–764. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_25

    Chapter  Google Scholar 

  13. Do, X.T., Phan, D.H., Yung, M.: A concise bounded anonymous broadcast yielding combinatorial trace-and-revoke schemes. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12147, pp. 145–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57878-7_8

    Chapter  Google Scholar 

  14. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_8

    Chapter  Google Scholar 

  15. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_14

    Chapter  Google Scholar 

  16. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC, pp. 660–670. ACM Press, June 2018. https://doi.org/10.1145/3188745.3188844

  17. Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 176–190. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36373-3_12

    Chapter  Google Scholar 

  18. Kim, C.H., Hwang, Y.H., Lee, P.J.: An efficient public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 359–373. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_23

    Chapter  Google Scholar 

  19. Li, J., Gong, J.: Improved anonymous broadcast encryptions. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 497–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_26

    Chapter  Google Scholar 

  20. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adaptive security and efficient constructions in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_13

    Chapter  Google Scholar 

  21. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_3

    Chapter  Google Scholar 

  22. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1_1

    Chapter  Google Scholar 

  23. Nguyen, P.: La géométrie des nombres en cryptologie. Ph.D. thesis, Université Paris 7 (1999)

    Google Scholar 

  24. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_14

    Chapter  MATH  Google Scholar 

  25. Tomida, J.: Tightly secure inner product functional encryption: multi-input and function-hiding constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 459–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_16

    Chapter  Google Scholar 

  26. Wang, Z., Fan, X., Liu, F.-H.: FE for inner products and its application to decentralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 97–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_4

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Benoît Libert for interesting discussions. This work was supported in part by European Union Horizon 2020 Research and Innovation Program Grant 780701 and by BPI-France in the context of the national project RISQ (P141580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huyen Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blazy, O., Mukherjee, S., Nguyen, H., Phan, D.H., Stehlé, D. (2021). An Anonymous Trace-and-Revoke Broadcast Encryption Scheme. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021. Lecture Notes in Computer Science(), vol 13083. Springer, Cham. https://doi.org/10.1007/978-3-030-90567-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90567-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90566-8

  • Online ISBN: 978-3-030-90567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics