Skip to main content

A Blockchain-Enabled Federated Learning Model for Privacy Preservation: System Design

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13083))

Included in the following conference series:

Abstract

Information Silo is a common problem in most industries, while Federated Learning (FL) as an emerging privacy-preservation technique aims to facilitate data sharing to solve the problem. It avoids data leakage by sharing the model gradient instead of the raw data. However, there are some challenges of FL, such as Single Point of Failure (SPoF), gradient privacy, and trust issues. This paper proposes a Homomorphic-integrated and blockchain-based FL model to address the above issues. It provides gradient privacy protection by employing Homomorphic, and uses a smart contract-based reputation scheme and an on/off-chain storage strategy to respectively solve FL trust and blockchain storage issues. In the end, it evaluates the proposed model by providing a qualitative privacy analysis and conducting preliminary experiments on model performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 1–35 (2018)

    Article  Google Scholar 

  2. Aste, T., Tasca, P., Di Matteo, T.: Blockchain technologies: the foreseeable impact on society and industry. Computer 50(9), 18–28 (2017)

    Article  Google Scholar 

  3. AU: Competition and consumer (consumer data right) rules (2020). https://www.legislation.gov.au/Details/F2020L00094

  4. Awan, S., Li, F., Luo, B., Liu, M.: Poster: a reliable and accountable privacy-preserving federated learning framework using the blockchain. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2561–2563 (2019)

    Google Scholar 

  5. Azbeg, K., Ouchetto, O., Andaloussi, S.J., Fetjah, L., Sekkaki, A.: Blockchain and IoT for security and privacy: a platform for diabetes self-management. In: 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech), pp. 1–5. IEEE (2018)

    Google Scholar 

  6. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  7. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)

    Google Scholar 

  8. Ethereum: A next-generation smart contract and decentralized application platform (2013). https://ethereum.org/en/whitepaper/

  9. EU: General data protection regulation (GDPR) (2018). https://gdpr-info.eu/

  10. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP J. Inf. Secur. 2007, 1–10 (2007)

    Article  Google Scholar 

  11. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 603–618 (2017)

    Google Scholar 

  12. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  13. Kim, H., Park, J., Bennis, M., Kim, S.L.: On-device federated learning via blockchain and its latency analysis. arXiv preprint arXiv:1808.03949 (2018)

  14. Learn, S.: Diabetes dataset (2020). https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset

  15. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr. Inf. 16(6), 4177–4186 (2019)

    Article  Google Scholar 

  16. Lyu, L., Yu, J., Nandakumar, K., Li, Y., Ma, X., Jin, J.: Towards fair and decentralized privacy-preserving deep learning with blockchain. arXiv preprint arXiv:1906.01167, pp. 1–13 (2019)

  17. Martinez, I., Francis, S., Hafid, A.S.: Record and reward federated learning contributions with blockchain. In: 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 50–57. IEEE (2019)

    Google Scholar 

  18. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  19. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 691–706. IEEE (2019)

    Google Scholar 

  20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  21. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  22. Salimitari, M., Chatterjee, M., Fallah, Y.P.: A survey on consensus methods in blockchain for resource-constrained IoT networks. Internet Things 100212 (2020)

    Google Scholar 

  23. Solidity: Introduction to smart contracts (2013). https://docs.soliditylang.org/en/v0.7.4/

  24. Steichen, M., Fiz, B., Norvill, R., Shbair, W., State, R.: Blockchain-based, decentralized access control for IPFS. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1499–1506. IEEE (2018)

    Google Scholar 

  25. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring class representatives: user-level privacy leakage from federated learning. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 2512–2520. IEEE (2019)

    Google Scholar 

  26. Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: DeepChain: auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans. Dependable Secure Comput. (2019)

    Google Scholar 

  27. Wolberg, W.H., Street, W.N., Mangasarian, O.L.: Breast cancer wisconsin (diagnostic) data set (1993). https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

  28. Zhao, Y., et al.: Privacy-preserving blockchain-based federated learning for IoT devices. IEEE Internet Things J. (2020)

    Google Scholar 

  29. Zheng, Z., et al.: An overview on smart contracts: challenges, advances and platforms. Futur. Gener. Comput. Syst. 105, 475–491 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minfeng Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, M. et al. (2021). A Blockchain-Enabled Federated Learning Model for Privacy Preservation: System Design. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021. Lecture Notes in Computer Science(), vol 13083. Springer, Cham. https://doi.org/10.1007/978-3-030-90567-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90567-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90566-8

  • Online ISBN: 978-3-030-90567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics