Abstract
Since Keccak was selected as the SHA-3 standard, both its hash mode and keyed mode have attracted lots of third-party cryptanalysis. Especially in recent years, there is progress in analyzing the collision resistance and preimage resistance of round-reduced Keccak. However, for the preimage attacks on round-reduced Keccak-384/512, we found that the linear relations leaked by the hash value are not well exploited when utilizing the current linear structures. To make full use of the \(320+64\times 2=448\) and 320 linear relations leaked by the hash value of Keccak-512 and Keccak-384, respectively, we propose a dedicated algebraic attack by expressing the output as a quadratic boolean equation system in terms of the input. Such a quadratic boolean equation system can be efficiently solved with linearization techniques. Consequently, we successfully improved the preimage attacks on 2/3/4 rounds of Keccak-384 and 2/3 rounds of Keccak-512.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the Keccak round function works on 64-bit words. In our implementation of Gauss elimination, we first encode the boolean coefficient matrix by treating every consecutive 64 bits as a 64-bit word in each row. Then, we perform the Gauss elimination on the encoded coefficient matrix. Such a way will not add extra cost to enumerate the solutions to the equation system after Gauss elimination.
- 2.
The quadratic expression \((x_0\oplus x_1)x_2\) will be treated as one quadratic term rather than two different quadratic terms \((x_0x_2,x_0x_1)\).
- 3.
This work is simple and we omit the details. Such a model was also used to verify the guessing strategy used in the preimage attack on 3-round Keccak-384.
References
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_11
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (2011). http://keccak.noekeon.org
Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: MILP-aided cube-attack-like cryptanalysis on Keccak keyed modes. Des. Codes Cryptogr. 87(6), 1271–1296 (2019)
Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_25
Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–761. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_28
Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical collision attacks against round-reduced SHA-3. IACR Cryptology ePrint Archive 2019, 147 (2019)
Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_9
Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_9
Kumar, R., Mittal, N., Singh, S.: Cryptanalysis of 2 tound Keccak-384. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 120–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_7
Li, T., Sun, Y.: Preimage attacks on round-reduced Keccak-224/256 via an allocating approach. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 556–584. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_19
Li, T., Sun, Y., Liao, M., Wang, D.: Preimage attacks on the round-reduced Keccak with cross-linear structures. IACR Trans. Symmetric Cryptol. 2017(4), 39–57 (2017)
Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on Keccak keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_4
Li, Z., Dong, X., Bi, W., Jia, K., Wang, X., Meier, W.: New conditional cube attack on Keccak keyed modes. IACR Trans. Symmetric Cryptol. 2019(2), 94–124 (2019)
Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic attacks on round-reduced Keccak/Xoodoo. Cryptology ePrint Archive, Report 2020/346 (2020). https://eprint.iacr.org/2020/346
Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 241–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_13
Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Keccak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_8
Rajasree, M.S.: Cryptanalysis of round-reduced Keccak using non-linear structures. Cryptology ePrint Archive, Report 2019/884 (2019). https://eprint.iacr.org/2019/884
Song, L., Guo, J.: Cube-attack-like cryptanalysis of round-reduced Keccak using MILP. IACR Trans. Symmetric Cryptol. 2018(3), 182–214 (2018)
Song, L., Guo, J., Shi, D., Ling, S.: New MILP modeling: improved conditional cube attacks on Keccak-based constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 65–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_3
Song, L., Liao, G., Guo, J.: Non-full Sbox linearization: applications to collision attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_15
Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_2
Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_2
Zhou, H., Li, Z., Dong, X., Jia, K., Meier, W.: Practical key-recovery attacks on round-reduced Ketje Jr, Xoodoo-AE and Xoodyak. IACR Cryptology ePrint Archive 2019, 447 (2019)
Acknowledgements
We thank the anonymous reviewers of ACISP 2021 for their useful comments. Fukang Liu is supported by Invitation Programs for Foreigner-based Researchers of NICT. In addition, he is also partially supported by the National Natural Science Foundation of China (No. 62072181) and the International Science and Technology Cooperation Projects (No. 61961146004). Takanori Isobe is supported by JST, PRESTO Grant Number JPMJPR2031, Grant-in-Aid for Scientific Research (B)(KAKENHI 19H02141) and SECOM science and technology foundation.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, F., Isobe, T., Meier, W., Yang, Z. (2021). Algebraic Attacks on Round-Reduced Keccak. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021. Lecture Notes in Computer Science(), vol 13083. Springer, Cham. https://doi.org/10.1007/978-3-030-90567-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-90567-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90566-8
Online ISBN: 978-3-030-90567-5
eBook Packages: Computer ScienceComputer Science (R0)