Skip to main content

Gaussian Process-Based Confidence Estimation for Hybrid System Falsification

  • Conference paper
  • First Online:
Formal Methods (FM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13047))

Included in the following conference series:

Abstract

Cyber-Physical Systems (CPSs) are widely adopted in safety-critical domains, raising great demands on their quality assurance. However, the application of formal verification is limited due to the continuous dynamics of CPSs. Instead, simulation-based falsification, which aims at finding a counterexample to refute the system specification, is a more feasible and hence actively pursued approach. Falsification adopts an optimization approach, treating robustness, given by the quantitative semantics of the specification language (usually Signal Temporal Logic (STL)), as the objective function. However, similarly to traditional testing, in the absence of found counterexamples, falsification does not give any guarantee on the system safety. To fill this gap, in this paper, we propose a confidence measure that estimates the probability that a formal specification is indeed not falsifiable, by relying on the information encapsulated in the simulation data collected during falsification. Methodologically, we approximate the robustness domain by feeding simulation data into a Gaussian Process (GP) Regression process; we then do a minimization sampling on the trained GP, and then estimate the probability that all the robustness values inferred from these sampled points are positive; we take this probability as the confidence measure. We experimentally study the properties of monotonicity and soundness of the proposed confidence measure. We also apply the measure to several state-of-the-art falsification algorithms to assess the maximum confidence they provide when they do not find a falsifying input, and the stability of such confidence across different repetitions.

Zhenya Zhang is supported by JSPS KAKENHI Grant No.20H04168, 19K24348, 19H04086, and JST-Mirai Program Grant No. JPMJMI18BB, Japan. Paolo Arcaini is supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we assume that the confidence measure is computed starting from non-falsifying inputs only. The measure does not make sense if at least one falsifying input is used for its computation; in that case, there is no need of the confidence measure, as we know that the specification is falsifiable.

  2. 2.

    Since computing the confidence measure can take up to 30 s, we have computed it only for some sizes of |T|.

References

  1. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and coverage-based falsification for embedded control systems. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_24

    Chapter  Google Scholar 

  2. Akazaki, T.: Falsification of conditional safety properties for cyber-physical systems with Gaussian process regression. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 439–446. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_27

    Chapter  Google Scholar 

  3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_21

    Chapter  MATH  Google Scholar 

  4. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The MIT Press (2008)

    Google Scholar 

  5. Balesdent, M., Morio, J., Marzat, J.: Kriging-based adaptive importance sampling algorithms for rare event estimation. Struct. Saf. 44, 1–10 (2013)

    Google Scholar 

  6. Botev, Z.: The normal law under linear restrictions: simulation and estimation via minimax tilting. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 1(79), 125–148 (2017)

    Google Scholar 

  7. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577–593 (1965)

    Google Scholar 

  8. Corso, A., Moss, R.J., Koren, M., Lee, R., Kochenderfer, M.J.: A survey of algorithms for black-box safety validation. arXiv preprint arXiv:2005.02979 (2020)

  9. Deshmukh, J., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-physical systems through Bayesian optimization. ACM Trans. Embed. Comput. Syst. 16(5s) (2017). https://doi.org/10.1145/3126521

  10. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsification of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_35

    Chapter  MATH  Google Scholar 

  11. Dokhanchi, A., et al.: ARCH-COMP18 category report: results on the falsification benchmarks. In: 5th International Workshop on Applied Verification of Continuous and Hybrid Systems, ARCH18. EPiC Series in Computing, vol. 54, pp. 104–109. EasyChair (2018). https://doi.org/10.29007/t85q

  12. Dokhanchi, A., Zutshi, A., Sriniva, R.T., Sankaranarayanan, S., Fainekos, G.: Requirements driven falsification with coverage metrics. In: Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2015, pp. 31–40. IEEE Press (2015)

    Google Scholar 

  13. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  14. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  15. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10

    Chapter  Google Scholar 

  16. Ernst, G., et al.: ARCH-COMP 2020 category report: falsification. In: 7th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20), ARCH20. EPiC Series in Computing, vol. 74, pp. 140–152. EasyChair (2020). https://doi.org/10.29007/trr1

  17. Ernst, G., et al.: ARCH-COMP 2019 category report: falsification. In: 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, ARCH19. EPiC Series in Computing, vol. 61, pp. 129–140. EasyChair (2019). https://doi.org/10.29007/68dk

  18. Ernst, G., Sedwards, S., Zhang, Z., Hasuo, I.: Fast falsification of hybrid systems using probabilistically adaptive input. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 165–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_10

    Chapter  Google Scholar 

  19. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021

  20. Feldt, R., Poulding, S.: Broadening the search in search-based software testing: it need not be evolutionary. In: Proceedings of the Eighth International Workshop on Search-Based Software Testing, SBST 2015, pp. 1–7. IEEE Press (2015)

    Google Scholar 

  21. Giordano, S., Gubinelli, M., Pagano, M.: Rare events of gaussian processes: a performance comparison between bridge Monte-Carlo and importance sampling. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS, vol. 4712, pp. 269–280. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74833-5_23

    Chapter  Google Scholar 

  22. Gladisch, C., Heinz, T., Heinzemann, C., Oehlerking, J., von Vietinghoff, A., Pfitzer, T.: Experience paper: search-based testing in automated driving control applications. In: Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. ASE 2019, pp. 26–37. IEEE Press (2019). https://doi.org/10.1109/ASE.2019.00013

  23. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Google Scholar 

  24. Harper, A.J.: Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function. Ann. Appl. Probab.23(2), 584–616 (2013). https://doi.org/10.1214/12-AAP847

  25. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements for automotive systems. In: 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014 / ARCH@CPSWeek 2015, Seattle, USA, April 13, 2015. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2014)

    Google Scholar 

  26. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control verification benchmark. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, HSCC 2014, pp. 253–262. ACM (2014). https://doi.org/10.1145/2562059.2562140

  27. Li, W.V., Shao, Q.M., et al.: Lower tail probabilities for gaussian processes. Ann. Probab. 32(1A), 216–242 (2004)

    Google Scholar 

  28. Marcus, M.B., Shepp, L.A., et al.: Sample behavior of gaussian processes. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory. The Regents of the University of California (1972)

    Google Scholar 

  29. Menghi, C., Nejati, S., Briand, L., Parache, Y.I.: Approximation-refinement testing of compute-intensive cyber-physical models: an approach based on system identification. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. ICSE 2020, pp. 372–384. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3377811.3380370

  30. Nejati, S., Gaaloul, K., Menghi, C., Briand, L.C., Foster, S., Wolfe, D.: Evaluating model testing and model checking for finding requirements violations in Simulink models. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2019, pp. 1015–1025. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3338906.3340444

  31. Rasmussen, C.E., Williams, C.K., Bach, F.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  32. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the falsification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_1

    Chapter  Google Scholar 

  33. Yamagata, Y., Liu, S., Akazaki, T., Duan, Y., Hao, J.: Falsification of cyber-physical systems using deep reinforcement learning. IEEE Trans. Softw. Eng. (2020). https://doi.org/10.1109/TSE.2020.2969178

  34. Zanette, A., Zhang, J., Kochenderfer, M.J.: Robust super-level set estimation using Gaussian processes. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11052, pp. 276–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10928-8_17

    Chapter  Google Scholar 

  35. Zhang, Z., Arcaini, P., Hasuo, I.: Hybrid system falsification under (in)equality constraints via search space transformation. IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst. 39(11), 3674–3685 (2020). https://doi.org/10.1109/TCAD.2020.3013073

  36. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification of hybrid systems guided by Monte Carlo Tree Search. IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst. 37(11), 2894–2905 (Nov 2018). https://doi.org/10.1109/TCAD.2018.2858463

  37. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-armed bandits for Boolean connectives in hybrid system falsification. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 401–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_23

    Chapter  Google Scholar 

  38. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective hybrid system falsification using Monte Carlo tree search guided by QB-robustness. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 595–618. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_29

    Chapter  Google Scholar 

  39. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: On the effectiveness of signal rescaling in hybrid system falsification. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 392–399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76384-8_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Arcaini, P. (2021). Gaussian Process-Based Confidence Estimation for Hybrid System Falsification. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90870-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90869-0

  • Online ISBN: 978-3-030-90870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics