Skip to main content

Model Checking Collision Avoidance of Nonlinear Autonomous Vehicles

  • Conference paper
  • First Online:
Formal Methods (FM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13047))

Included in the following conference series:

Abstract

Autonomous vehicles are expected to be able to avoid static and dynamic obstacles automatically, along their way. However, most of the collision-avoidance functionality is not formally verified, which hinders ensuring such systems’ safety. In this paper, we introduce formal definitions of the vehicle’s movement and trajectory, based on hybrid transition systems. Since formally verifying hybrid systems algorithmically is undecidable, we reduce the verification of nonlinear vehicle behavior to verifying discrete-time vehicle behavior overapproximations. Using this result, we propose a generic approach to formally verify autonomous vehicles with nonlinear behavior against reach-avoid requirements. The approach provides a Uppaal timed-automata model of vehicle behavior, and uses Uppaal STRATEGO for verifying the model with user-programmed libraries of collision-avoidance algorithms. Our experiments show the approach’s effectiveness in discovering bugs in a state-of-the-art version of a selected collision-avoidance algorithm, as well as in proving the absence of bugs in the algorithm’s improved version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When \(C<T\), \(sc(\xi )=\xi (0,C+T)\).

  2. 2.

    When no dynamic obstacle is detected, \(L_o\) is zero.

  3. 3.

    Computation of \(d(\mathbf{O} _u, \xi _{rd}(t_i, t_{i+1}))\) is in a more detailed version of this paper [12].

  4. 4.

    The models and external library: https://github.com/rgu01/FM2021.

References

  1. Abhishek, A., Sood, H., Jeannin, J.B.: Formal verification of braking while swerving in automobiles. In: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, pp. 1–11 (2020)

    Google Scholar 

  2. Abhishek, A., Sood, H., Jeannin, J.B.: Formal verification of swerving maneuvers for car collision avoidance. In: 2020 American Control Conference (ACC), pp. 4729–4736. IEEE (2020)

    Google Scholar 

  3. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993)

    Article  MathSciNet  Google Scholar 

  4. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  5. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)

    Article  MathSciNet  Google Scholar 

  6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16

    Chapter  Google Scholar 

  7. DeCastro, J.A., Alonso-Mora, J., Raman, V., Rus, D., Kress-Gazit, H.: Collision-free reactive mission and motion planning for multi-robot systems. In: Bicchi, A., Burgard, W. (eds.) Robotics Research. SPAR, vol. 2, pp. 459–476. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-51532-8_28

    Chapter  Google Scholar 

  8. Fan, C., Miller, K., Mitra, S.: Fast and guaranteed safe controller synthesis for nonlinear vehicle models. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 629–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_31

    Chapter  Google Scholar 

  9. Fan, C., Qin, Z., Mathur, U., Ning, Q., Mitra, S., Viswanathan, M.: Controller synthesis for linear system with reach-avoid specifications. IEEE Trans. Automatic Control (2021)

    Google Scholar 

  10. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  11. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Formal verification of an autonomous wheel loader by model checking. In: Proceedings of the 6th Conference on Formal Methods in Software Engineering, pp. 74–83. ACM (2018)

    Google Scholar 

  12. Gu, R., Seceleanu, C., Enoiu, E.P., Lundqvist, K.: Formal verification of collision avoidance for nonlinear autonomous vehicle models. Technical report, Mälardalen University, April 2021

    Google Scholar 

  13. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

    Article  MathSciNet  Google Scholar 

  14. Heß, D., Althoff, M., Sattel, T.: Formal verification of maneuver automata for parameterized motion primitives. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1474–1481. IEEE (2014)

    Google Scholar 

  15. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 137–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_15

    Chapter  MATH  Google Scholar 

  16. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transfer 1, 134–152 (1997)

    Article  Google Scholar 

  17. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical report, Computer Science Department, Iowa State University, October 1998

    Google Scholar 

  18. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obstacle avoidance and navigation of ground robots. Int. J. Robot. Res. 36(12), 1312–1340 (2017)

    Article  Google Scholar 

  19. O’Kelly, M., Abbas, H., Gao, S., Shiraishi, S., Kato, S., Mangharam, R.: Apex: autonomous vehicle plan verification and execution. In: SAE World Congress (2016)

    Google Scholar 

  20. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)

    Article  MathSciNet  Google Scholar 

  21. Rabin, S.: Game programming gems, chapter a* aesthetic optimizations. Charles River Media (2000)

    Google Scholar 

  22. Shokri-Manninen, F., Vain, J., Waldén, M.: Formal verification of COLREG-based navigation of maritime autonomous systems. In: de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp. 41–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58768-0_3

    Chapter  Google Scholar 

  23. Trinh, L., Ekström, M., Çürüklü, B.: Dipole flow field for dependable path planning of multiple agents. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2017

    Google Scholar 

Download references

Acknowledgement

We acknowledge the support of the Swedish Knowledge Foundation via the profile DPAC - Dependable Platform for Autonomous Systems and Control, grant nr: 20150022, and via the synergy ACICS - Assured Cloud Platforms for Industrial Cyber-Physical Systems, grant nr. 20190038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, R., Seceleanu, C., Enoiu, E., Lundqvist, K. (2021). Model Checking Collision Avoidance of Nonlinear Autonomous Vehicles. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90870-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90869-0

  • Online ISBN: 978-3-030-90870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics