Abstract
We study the problem of finding optimal strategies in Markov decision processes with lexicographic \(\omega \)-regular objectives, which are ordered collections of ordinary \(\omega \)-regular objectives. The goal is to compute strategies that maximise the probability of satisfaction of the first \(\omega \)-regular objective; subject to that, the strategy should also maximise the probability of satisfaction of the second \(\omega \)-regular objective; then the third and so forth. For instance, one may want to guarantee critical requirements first, functional ones second and only then focus on the non-functional ones. We show how to harness the classic off-the-shelf model-free reinforcement learning techniques to solve this problem and evaluate their performance on four case studies.
This work was supported by the Engineering and Physical Sciences Research Council through grant EP/P020909/1 and by the National Science Foundation through grant 2009022.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 101032464 (SyGaST), 864075 (CAESAR), and 956123 (FOCETA).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University (1998)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bozkurt, A.K., Wang, Y., Pajic, M.: Model-free learning of safe yet effective controllers. arXiv preprint arXiv:2103.14600 (2021)
Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from linear temporal logic specifications using model-free reinforcement learning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10349–10355 (2020). https://doi.org/10.1109/ICRA40945.2020.9196796
Chatterjee, K.: Markov decision processes with multiple long-run average objectives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science, pp. 473–484. Springer, Heidelberg (2007)
Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_26
Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp. 50–65. Springer, Heidelberg (2007)
Feng, L., Wiltsche, C., Humphrey, L.R., Topcu, U.: Controller synthesis for autonomous systems interacting with human operators. In: Bayen, A.M., Branicky, M.S. (eds.) Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, ICCPS 2015, Seattle, WA, USA, 14–16, April, 2015, pp. 70–79. ACM (2015). https://doi.org/10.1145/2735960.2735973
Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp. 112–127. Springer, Heidelberg (2011)
Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with temporal logic constraints. In: Robotics: Science and Systems, July 2014
Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_27
Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-for-mdps automata for probabilistic analysis and reinforcement learning. In: Tools and Algorithms for the Construction and Analysis of Systems (2020)
Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Faithful and effective reward schemes for model-free reinforcement learning of omega-regular objectives. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_6
Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct reinforcement learning. CoRR abs/1801.08099 (2018). http://arxiv.org/abs/1801.08099
Hasanbeig, M., Abate, A., Kroening, D.: Certified reinforcement learning with logic guidance. arXiv:1902.00778 (2019)
KretÃnský, J., Pérez, G.A., Raskin, J.: Learning-based mean-payoff optimization in an unknown MDP under omega-regular constraints. In: Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR 2018, 4–7, September, 2018, Beijing, China, vol. 118, pp. 8:1–8:18. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.8
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Kwiatkowska, M., Norman, G., Parker, D., Vigliotti, M.: Probabilistic mobile ambients. Theoretical Computer Science 410(12–13), 1272–1303 (2009)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (1994)
Sadigh, D., Kim, E., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based approach to control synthesis of Markov decision processes for linear temporal logic specifications. In: CDC, pp. 1091–1096, December 2014
Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free reinforcement learning. In: International Conference on Machine Learning, ICM, pp. 881–888 (2006)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D. (2021). Model-Free Reinforcement Learning for Lexicographic Omega-Regular Objectives. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-90870-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90869-0
Online ISBN: 978-3-030-90870-6
eBook Packages: Computer ScienceComputer Science (R0)