Skip to main content

Mining Outlying Aspects on Healthcare Data

  • Conference paper
  • First Online:
Health Information Science (HIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13079))

Included in the following conference series:

Abstract

Machine learning and artificial intelligence have a wide range of applications in medical domain, such as detecting anomalous reading, anomalous patient health condition, etc. Many algorithms have been developed to solve this problem. However, they fail to answer why those entries are considered as an outlier. This research gap leads to outlying aspect mining problem. The problem of outlying aspect mining aims to discover the set of features (a.k.a subspace) in which the given data point is dramatically different than others. In this paper, we present an interesting application of outlying aspect mining in the medical domain. This paper aims to effectively and efficiently identify outlying aspects using different outlying aspect mining algorithms and evaluate their performance on different real-world healthcare datasets. The experimental results show that the latest isolation-based outlying aspect mining measure, SiNNE, have outstanding performance on this task and have promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Anomaly and outlier are most commonly used terms in the literature. In this work, hereafter, we will use outlier term only.

  2. 2.

    The description of data set is provided in Table 1.

  3. 3.

    Available at https://www.ipd.kit.edu/~muellere/HiCS/.

  4. 4.

    Available at https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/.

  5. 5.

    Due to space limitation, we only present discovered subspaces of two queries. We choose queries where discovered subspaces are different for each scoring measure.

  6. 6.

    RBeam and Beam are unable to finish the process in 1 h for Annthyroid data set.

References

  1. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Wells, J.R.: Efficient anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 698–705 (2014). https://doi.org/10.1109/ICDMW.2014.70

  2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104. SIGMOD 2000, Association for Computing Machinery, New York, NY, USA (2000). https://doi.org/10.1145/342009.335388

  3. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Mining Knowl. Disc. 30(4), 891–927 (2016). https://doi.org/10.1007/s10618-015-0444-8

    Article  MathSciNet  Google Scholar 

  4. Duan, L., Tang, G., Pei, J., Bailey, J., Campbell, A., Tang, C.: Mining outlying aspects on numeric data. Data Mining Knowl. Disc. 29(5), 1116–1151 (2015). https://doi.org/10.1007/s10618-014-0398-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

  6. Härdle, W.: Smoothing techniques: with implementation in S. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  7. Keller, F., Muller, E., Bohm, K.: Hics: high contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88

  8. Laurikkala, J., Juhola, M., Kentala, E., Lavrac, N., Miksch, S., Kavsek, B.: Informal identification of outliers in medical data. In: Fifth International Workshop on Intelligent Data Analysis in Medicine and Pharmacology, Vol. 1, pp. 20–24 (2000)

    Google Scholar 

  9. Pham, T.D.: Classification of COVID-19 chest x-rays with deep learning: new models or fine tuning? Health Inf. Sci. Syst. 9(1), 1–11 (2021)

    Article  Google Scholar 

  10. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004). https://doi.org/10.1016/j.media.2004.06.007

    Article  Google Scholar 

  11. Samariya, D., Aryal, S., Ting, K.M., Ma, J.: A new effective and efficient measure for outlying aspect mining. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12343, pp. 463–474. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62008-0_32

    Chapter  Google Scholar 

  12. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons, Hoboken (2015)

    Book  Google Scholar 

  13. Tachmazidis, I., Chen, T., Adamou, M., Antoniou, G.: A hybrid AI approach for supporting clinical diagnosis of attention deficit hyperactivity disorder (ADHD) in adults. Health Inf. Syst. 9(1), 1–8 (2021)

    Article  Google Scholar 

  14. van Capelleveen, G., Poel, M., Mueller, R.M., Thornton, D., van Hillegersberg, J.: Outlier detection in healthcare fraud: a case study in the Medicaid dental domain. Int. J. Acc. Inf. Syst. 21, 18–31 (2016). https://doi.org/10.1016/j.accinf.2016.04.001

    Article  Google Scholar 

  15. Vinh, N.X., Chan, J., Romano, S., Bailey, J., Leckie, C., Ramamohanarao, K., Pei, J.: Discovering outlying aspects in large datasets. Data Mining Knowl. Disc. 30(6), 1520–1555 (2016). https://doi.org/10.1007/s10618-016-0453-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Wells, J.R., Ting, K.M.: A new simple and efficient density estimator that enables fast systematic search. Pattern Recogn. Lett. 122, 92–98 (2019). https://doi.org/10.1016/j.patrec.2018.12.020

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Federation University Research Priority Area (RPA) scholarship, awarded to Durgesh Samariya. We are thankful to the anonymous reviewers for their critical comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgesh Samariya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samariya, D., Ma, J. (2021). Mining Outlying Aspects on Healthcare Data. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds) Health Information Science. HIS 2021. Lecture Notes in Computer Science(), vol 13079. Springer, Cham. https://doi.org/10.1007/978-3-030-90885-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90885-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90884-3

  • Online ISBN: 978-3-030-90885-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics