Abstract
Access control is an effective way to prevent data exfiltration from insiders. Recently, machine learning algorithms have been widely used in access control decision-making. However, these algorithms usually fail to consider the dynamic class imbalance in access control problems and thus achieve poor performance on minority classes. In addition, concept drift problems caused by evolving user and resource attributes, user behaviours and access environments are also challenges to tackle. This paper proposes a minority class boosted framework for adaptive access control methods. Specifically, this framework uses a continuous incremental batch learning strategy instead of a batch learning approach to handle the concept drift problem adaptively. Furthermore, a boosting window (BW) algorithm within the framework is specially designed to boost the performance of the minority class, thus, to decrease false positive decisions. The proposed framework is evaluated on a well-known Amazon employee access dataset and results demonstrate the effectiveness and flexibility of the proposed framework and BW algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: a temporal role-based access control model. In: Proceedings of the Fifth ACM Workshop on Role-Based Access Control, pp. 21–30 (2000)
Ding, S., Cao, J., Li, C., Fan, K., Li, H.: A novel attribute-based access control scheme using blockchain for IoT. IEEE Access 7, 38431–38441 (2019)
Dutta, S., Chukkapalli, S.S.L., Sulgekar, M., Krithivasan, S., Das, P.K., Joshi, A.: Context sensitive access control in smart home environments. In: 2020 IEEE 6th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), pp. 35–41. IEEE (2020)
Gupta, M., Awaysheh, F.M., Benson, J., Al Azab, M., Patwa, F., Sandhu, R.: An attribute-based access control for cloud-enabled industrial smart vehicles. IEEE Trans. Ind. Inform. (2020)
He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23 (2020). https://doi.org/10.1007/s11280-019-00776-9
Hu, V.C., Kuhn, D.R., Ferraiolo, D.F., Voas, J.: Attribute-based access control. Computer 48(2), 85–88 (2015)
Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22 (2019). https://doi.org/10.1007/s11280-018-0639-1
Kabir, E., Mahmood, A., Wang, H., Mustafa, A.: Microaggregation sorting framework for k-anonymity statistical disclosure control in cloud computing. IEEE Trans. Cloud Comput. PP, 1 (2015). https://doi.org/10.1109/TCC.2015.2469649
Li, H., Wang, Y., Wang, H., Zhou, B.: Multi-window based ensemble learning for classification of imbalanced streaming data. World Wide Web 20, 1–19 (2017). https://doi.org/10.1007/s11280-017-0449-x
Li, J., Zhang, B.: An ontology-based approach to improve access policy administration of attribute-based access control. Int. J. Inf. Comput. Secur. 11(4–5), 391–412 (2019)
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)
McAfee: Grand theft data II: the drivers and shifting state of data breaches. Technical report, McAfee (2019). https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-data-exfiltration-2.pdf
Miwa, M., Ananiadou, S.: Adaptable, high recall, event extraction system with minimal configuration. BMC Bioinform. 16(10), 1–11 (2015)
Moyer, M.J., Abamad, M.: Generalized role-based access control. In: Proceedings 21st International Conference on Distributed Computing Systems, pp. 391–398. IEEE (2001)
Paci, F., Squicciarini, A., Zannone, N.: Survey on access control for community-centered collaborative systems. ACM Comput. Surv. (CSUR) 51(1), 1–38 (2018)
Sandhu, R.S.: Role-based access control. In: Advances in Computers, vol. 46, pp. 237–286. Elsevier (1998)
Servos, D., Osborn, S.L.: Current research and open problems in attribute-based access control. ACM Comput. Surv. (CSUR) 49(4), 1–45 (2017)
Srivastava, K., Shekokar, N.: Machine learning based risk-adaptive access control system to identify genuineness of the requester. In: Gunjan, V.K., Zurada, J.M., Raman, B., Gangadharan, G.R. (eds.) Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough. SCI, vol. 885, pp. 129–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38445-6_10
Sun, X., Wang, H., Li, J., Pei, J.: Publishing anonymous survey rating data. Data Min. Knowl. Discov. 23, 379–406 (2011). https://doi.org/10.1007/s10618-010-0208-4
Sun, X., Wang, H., Plank, A.: An efficient hash-based algorithm for minimal k-anonymity. In: Proceedings of the Thirty-first Australasian Conference on Computer Science, vol. 74, pp. 101–107 (2008). https://doi.org/10.1145/1378279.1378297
Verizon: Data breach investigations report. Technical report, Verizon (2020). https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian my health records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8 (2020). https://doi.org/10.1007/s13755-020-00126-4
Wang, H., Cao, J., Zhang, Y.: Ticket-based service access scheme for mobile users. Australian Comput. Sci. Commun., 285–292 (2002). https://doi.org/10.1145/563857.563834
Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access control. IEEE Trans. Knowl. Data Eng. 17, 425–436 (2005). https://doi.org/10.1109/TKDE.2005.35
Wang, H., Sun, L.: Trust-involved access control in collaborative open social networks. In: 2010 Fourth International Conference on Network and System Security, pp. 239–246. IEEE, September 2010. https://doi.org/10.1109/NSS.2010.13
Wang, H., Sun, L., Bertino, E.: Building access control policy model for privacy preserving and testing policy conflicting problems. J. Comput. Syst. Sci. 80 (2014). https://doi.org/10.1016/j.jcss.2014.04.017
Wang, H., Wang, Y., Taleb, T., Jiang, X.: Editorial: Special issue on security and privacy in network computing. World Wide Web 23 (2019). https://doi.org/10.1007/s11280-019-00704-x
Wang, H., Zhang, Y., Cao, J.: Effective collaboration with information sharing in virtual universities. IEEE Trans. Knowl. Data Eng. 21, 840–853 (2009). https://doi.org/10.1109/TKDE.2008.132
Yin, J., Tang, M., Cao, J., Wang, H.: Apply transfer learning to cybersecurity: predicting exploitability of vulnerabilities by description. Knowl. Based Syst. 210, 106529 (2020)
Yin, J., Tang, M.J., Cao, J., Wang, H., You, M., Lin, Y.: Adaptive online learning for vulnerability exploitation time prediction. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12343, pp. 252–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62008-0_18
Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. Word Wide Web 1(1), 1–23 (2021). https://doi.org/10.1007/s11280-021-00909-z
Zhang, F., Wang, Y., Liu, S., Wang, H.: Decision-based evasion attacks on tree ensemble classifiers. World Wide Web 23 (2020). https://doi.org/10.1007/s11280-020-00813-y
Zhang, J., Li, H., Liu, X., Luo, Y., Chen, F., Wang, H.: On efficient and robust anonymization for privacy protection on massive streaming categorical information. IEEE Trans. Dependable Secure Comput. PP, 1 (2015). https://doi.org/10.1109/TDSC.2015.2483503
Zhang, Y., Zheng, D., Deng, R.H.: Security and privacy in smart health: efficient policy-hiding attribute-based access control. IEEE Internet Things J. 5(3), 2130–2145 (2018)
Zhong, H., Zhou, Y., Zhang, Q., Xu, Y., Cui, J.: An efficient and outsourcing-supported attribute-based access control scheme for edge-enabled smart healthcare. Future Gener. Comput. Syst. 115, 486–496 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
You, M., Yin, J., Wang, H., Cao, J., Miao, Y. (2021). A Minority Class Boosted Framework for Adaptive Access Control Decision-Making. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13080. Springer, Cham. https://doi.org/10.1007/978-3-030-90888-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-90888-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90887-4
Online ISBN: 978-3-030-90888-1
eBook Packages: Computer ScienceComputer Science (R0)