Skip to main content

Research on In-Vehicle Haptic Interactions as Crucial Resources for Driver Perceptions

  • Conference paper
  • First Online:
HCI International 2021 - Late Breaking Papers: HCI Applications in Health, Transport, and Industry (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13097))

Included in the following conference series:

Abstract

Multiple resource theory is currently commonly applied in human–machine interactions in vehicle design. Haptic interaction is a crucial resource for driver perceptions. This paper reviews haptic research related to haptic driving from 2008 to 2020. A total of 248 journal papers and conference proceeding papers were reviewed and analyzed in CiteSpace, and 11 key elements were clustered. This paper presents them in two domains: vibration patterns and vibration scenarios. With vibration patterns, we mainly focus on patterns and locations; within this framework, we discuss applied scenarios, such as navigation, collision warning, and eco-driving. We also discuss the main challenges and future directions for transferring the results to real driving scenes and offer a roadmap for haptic research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wickens, C.D.: Processing resources in attention, dual-task performance, and workload assessment. Transp. Res. 59, 63–102 (1984)

    Google Scholar 

  2. Hibberd, D.L., Jamson, A.H., Jamson, S.: The design of an in-vehicle assistance system to support eco-driving. Transp. Res. Part C: Emerg. Technol. 58, 732–748 (2015)

    Article  Google Scholar 

  3. Muhrer, E., Vollrath, M.: The effect of visual and cognitive distraction on driver’s anticipation in a simulated car following scenario. Transp. Res. F: Traffic Psychol. Behav. 14(6), 555–566 (2011)

    Article  Google Scholar 

  4. Liu, Y.: Comparative study of the effects of auditory, visual and multimodality displays on drivers’ performance in advanced traveler information systems. Ergonomics 44(4), 425–442 (2001)

    Article  Google Scholar 

  5. Beede, K.E., Kass, S.J.: Engrossed in conversation: the impact of cell phones on simulated driving performance. Accid. Anal. Prev. 38(2), 415–421 (2006)

    Article  Google Scholar 

  6. Ranney, T.A., Harblu, J.L., Noy, Y.I.: Effects of voice technology on test track driving performance: implications for driver distraction. Hum. Factors 47(2), 439–454 (2005)

    Article  Google Scholar 

  7. Garrett, W., Bret, H., Zeljko, M.: Evaluating the usability of a head-up display for selection from choice lists in cars. In: Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2011), pp. 39–46. Association for Computing Machinery (2011)

    Google Scholar 

  8. ISO 9241-940: 2017 Ergonomics of human-system interaction—Part 940: Evaluation of tactile and haptic interactions

    Google Scholar 

  9. Hwang, S., Ryu, J.: The haptic steering wheel: vibro-tactile based navigation for the driving environment. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 660–665. IEEE (2010)

    Google Scholar 

  10. Capallera, M., Barbé-Labarthe, P., Angelini, L., Khaled, O.A., Mugellini, E.: Convey situation awareness in conditionally automated driving with a haptic seat. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 161–165. Adjunct Proceedings (2019)

    Google Scholar 

  11. Alex, R., Alonso, M.B.: Designing haptic effects on an accelerator pedal to support a positive eco-driving experience. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications - AutomotiveUI 2019, pp. 319–328 (2019)

    Google Scholar 

  12. Ji, Y., Lee, K., Hwang, W.: Haptic perceptions in the vehicle seat. Hum. Factors Ergon. Manuf. Serv. Ind. 21(3), 305–325 (2011)

    Article  Google Scholar 

  13. Self, B.P., Van Erp, J.B., Eriksson, L., Elliott, L.R.: Human factors issues of tactile displays for military environments. Tactile Displays for Orientation, Navigation and Communication in Air, Sea and Land Environments (2008)

    Google Scholar 

  14. Amna, A., Susanne, B.: Where to turn my car? Comparison of a tactile display and a conventional car navigation system under high load condition. In: Proceedings of the 2nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2010), pp. 64–71. Association for Computing Machinery (2010)

    Google Scholar 

  15. Szczerba, J., Hersberger, R., Mathieu, R.: A wearable vibrotactile display for automotive route guidance. Pac. Northwest Q. 59(1), 1027–1031 (2015)

    Google Scholar 

  16. Mars, F., Deroo, M., Hoc, J.: Analysis of human-machine cooperation when driving with different degrees of haptic shared control. IEEE Trans. Haptics 7(3), 324–333 (2014)

    Article  Google Scholar 

  17. Mulder, M., Abbink, D.A., Boer, E.R.: The effect of haptic guidance on curve negotiation behavior of young, experienced drivers. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 804–809 (2008)

    Google Scholar 

  18. Ploch, C.J., Bae, J.H., Ju, W., Cutkosky, M.: Haptic skin stretch on a steering wheel for displaying preview information in autonomous cars. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)

    Google Scholar 

  19. Di Campli San Vito, P., et al.: Haptic navigation cues on the steering wheel. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI 2019), pp. 1–11. Association for Computing Machinery (2019)

    Google Scholar 

  20. Takada, Y., Boer, E.R., Sawaragi, T.: Driving assist system shared haptic human system interaction. IFAC Proc. Volumes 46(15), 203–210 (2013)

    Article  Google Scholar 

  21. Grah, T., Epp, F., Wuchse, M., Meschtscherjakov, A., Gabler, F., Steinmetz, A., Tscheligi, M.: Dorsal haptic display. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2015), pp.100–105. Association for Computing Machinery (2015)

    Google Scholar 

  22. Telpaz, A., Rhindress, B., Zelman, I., Tsimhoni, O.: Haptic seat for automated driving: preparing the driver to take control effectively. In: International Conference on Automotive User Interfaces and Interactive Vehicular Applications. ACM (2015)

    Google Scholar 

  23. Melman, T., De Winter, J.C.F., Abbink, D.A.: Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies. Accid. Anal. Prev. 98, 372–387 (2017)

    Article  Google Scholar 

  24. Geitner, C., Birrell, S., Skrypchuk, L., Krehl, C., Mouzakitis, A., Jennings, P.: Good vibrations: driving with a haptic pedal. In: Adjunct Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2015), pp.100–105. Association for Computing Machinery (2015)

    Google Scholar 

  25. Chun, J., Han, S.H., Park, G., Seo, J., Choi, S.: Evaluation of vibrotactile feedback for forward collision warning on the steering wheel and seatbelt. Int. J. Ind. Ergon. 42(5), 443–448 (2012)

    Article  Google Scholar 

  26. Jamson, S.L., Hibberd, D.L., Jamson, A.H.: Drivers’ ability to learn eco-driving skills; effects on fuel efficient and safe driving behaviour. Transp. Res. Part C: Emerg. Technol. 58, 657–668 (2015)

    Article  Google Scholar 

  27. Petermeijer, S., Bazilinskyy, P., Bengler, K., De Winter, J.: Take-over again: investigating multi-modal and directional TORs to get the driver back into the loop. Appl. Ergon. 62, 204–215 (2017)

    Article  Google Scholar 

  28. Lee, J., McGehee, D.V., Brown, T., Marshall, D.: Effects of adaptive cruise control and alert modality on driver performance. Accid. Reconstr. J. 19(5), 10–17 (2009)

    Google Scholar 

  29. Beruscha, F., Krautter, W., Lahmer, A., Pauly, M.: An evaluation of the influence of haptic feedback on gaze behavior during in-car interaction with touch screens. In: 2017 IEEE World Haptics Conference (WHC), pp. 201–206. IEEE (2017)

    Google Scholar 

  30. Cornelio Martinez, P.I., De Pirro, S., Vi, C.T., Subramanian, S.: Agency in mid-air interfaces. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 2426–2439 (2017)

    Google Scholar 

  31. Lassagne, A., Kemeny, A., Posselt, J., Merienne, F.: Comparing tangible and entirely virtual haptic systems for HMI studies in simulated driving situations. Science Arts & Métiers (2019)

    Google Scholar 

  32. Ng, A., Brewster, S. A., Beruscha, F., Krautter, W.: An evaluation of input controls for in-car interactions. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 2845–2852 (2017)

    Google Scholar 

  33. Tian, R., Li, L., Rajput, V.S., Witt, G.J., Duffy, V.G., Chen, Y.: Study on the display positions for the haptic rotary device-based integrated in-vehicle infotainment interface. IEEE Trans. Intell. Transp. Syst. 15(3), 1234–1245 (2014)

    Article  Google Scholar 

  34. Nukarinen, T., Rantala, J., Farooq, A., Raisamo, R.: Delivering directional haptic cues through eyeglasses and a seat. In: 2015 IEEE World Haptics Conference (WHC), pp. 345–350. IEEE (2015)

    Google Scholar 

  35. Nukarinen, T., Raisamo, R., Farooq, A., Evreinov, G., Surakka, V.: Effects of directional haptic and non-speech audio cues in a cognitively demanding navigation task. In: Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, pp. 61–64 (2014)

    Google Scholar 

  36. Ploch, C.J., Bae, J.H., Ploch, C.C., Ju, W., Cutkosky, M.R.: Comparing haptic and audio navigation cues on the road for distracted drivers with a skin stretch steering wheel. In: 2017 IEEE World Haptics Conference (WHC), pp. 448–453. IEEE (2017)

    Google Scholar 

  37. Kim, S., Hong, J.H., Li, K.A., Forlizzi, J., Dey, A.K.: Route guidance modality for elder driver navigation. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) Pervasive Computing. Pervasive 2012, vol. 7319, pp. 179–196. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-31205-2_12

    Chapter  Google Scholar 

  38. Chun, J., Lee, I., Park, G., Seo, J., Choi, S., Han, S.H.: Efficacy of haptic blind spot warnings applied through a steering wheel or a seatbelt. Transp. Res. F: Traffic Psychol. Behav. 21, 231–241 (2013)

    Article  Google Scholar 

  39. Meng, F., Spence, C.: Tactile warning signals for in-vehicle systems. Accid. Anal. Prev. 75, 333–346 (2015)

    Article  Google Scholar 

  40. Meng, F., Gray, R., Ho, C., Ahtamad, M., Spence, C.: Dynamic vibrotactile signals for forward collision avoidance warning systems. Hum. Factors 57(2), 329–346 (2015)

    Article  Google Scholar 

  41. Ahtamad, M., Spence, C., Ho, C., Gray, R.: Warning drivers about impending collisions using vibrotactile flow. IEEE Trans. Haptics 9(1), 134–141 (2016)

    Article  Google Scholar 

  42. Morioka, M., Griffin, M.J.: Absolute thresholds for the perception of fore-and-aft, lateral, and vertical vibration at the hand, the seat, and the foot. J. Sound Vib. 314(1), 357–370 (2008)

    Article  Google Scholar 

  43. Van Erp, J.B., Van Veen, H.A.: Vibro-tactile information presentation in automobiles. In: Proceedings of Eurohaptics, pp. 99–104. Eurohaptics Society (2001)

    Google Scholar 

  44. Cosgun, A., Sisbot, E.A., Christensen, H.I.: Guidance for human navigation using a vibro-tactile belt interface and robot-like motion planning. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6350–6355. IEEE (2014)

    Google Scholar 

  45. Ferscha, A., Zia, K.: Lifebelt: crowd evacuation based on vibro-tactile guidance. IEEE Pervasive Comput. 9(4), 33–42 (2010)

    Article  Google Scholar 

  46. Straub, M., Riener, A., Ferscha, A.: Distance encoding in vibro-tactile guidance cues. In: 2009 6th Annual International Mobile and Ubiquitous Systems: Networking and Services, MobiQuitous. pp. 1–2. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xin, X., Wang, Y., Liu, N., Yang, W., Dong, H., Liu, W. (2021). Research on In-Vehicle Haptic Interactions as Crucial Resources for Driver Perceptions. In: Stephanidis, C., et al. HCI International 2021 - Late Breaking Papers: HCI Applications in Health, Transport, and Industry. HCII 2021. Lecture Notes in Computer Science(), vol 13097. Springer, Cham. https://doi.org/10.1007/978-3-030-90966-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90966-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90965-9

  • Online ISBN: 978-3-030-90966-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics