Skip to main content

On Search for All Roots of a System of Quadratic Equations

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13078))

Included in the following conference series:

Abstract

We propose an approach to finding the roots of systems of quadratic equations in a box. This approach is based on a reduction to an auxiliary optimization problem. The auxiliary problem turns out to be, in general, a nonconvex optimization problem, with the objective function and inequality constraints given by d.c. functions. We use the linearization technique with respect to the basic nonconvexity and box partition procedure to try to find all solutions of the system or proof that there are no solutions in the box. The results of the computational simulation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Khayyal, F., Falk, J.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  Google Scholar 

  2. Amat, S., Busquier, S. (eds.): Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI, vol. 10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39228-8

    Book  MATH  Google Scholar 

  3. Bates, D., Hauenstein, J., Peterson, C., Sommese, A.: A numerical local dimension test for points on the solution set of a system of polynomial equations. SIAM J. Numer. Anal. 47(5), 3608–3623 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bulatov, V.: Methods for solving multi-extremal problems (global search). Ann. Oper. Res. 25, 253–277 (1990)

    Article  MathSciNet  Google Scholar 

  5. Bulatov, V.: Numerical method of funding all real roots of systems of nonlinear equations. Comput. Math. Math. Phys. 40, 331–338 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

    Book  MATH  Google Scholar 

  7. Dennis, J.E., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equation. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  8. Dickenstein, A., Emiris, I. (eds.): Solving Polynomial Equations. Foundations, Algorithms, and Applications. AACIM, vol. 14. Springer-Verlag, Heidelberg (2005). https://doi.org/10.1007/b138957

    Book  MATH  Google Scholar 

  9. Facchinei, F., Fischer, A., Herrich, M.: A family of newton methods for nonsmooth constrained systems with nonisolated solutions. Math. Meth. Oper. Res. 77, 433–443 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gong, W., Wang, Y., Cai, Z., Wang, L.: Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution. IEEE Trans. Syst. Man Cybern. Syst. 50(4), 1499–1513 (2020)

    Article  Google Scholar 

  11. Gruzdeva, T.V., Strekalovsky, A.S.: Local search in problems with nonconvex constraints. Comput. Math. Math. Phys. 47(3), 381–396 (2007)

    Article  MathSciNet  Google Scholar 

  12. Hirsch, M., Pardalos, P., Resende, M.: Solving systems of nonlinear equations with continuous grasp. Nonlinear Anal. Real World Appl. 10(4), 2000–2006 (2009)

    Article  MathSciNet  Google Scholar 

  13. Izmailov, A., Kurennoy, A., Solodov, M.: Critical solutions of nonlinear equations: local attraction for newton type-methods. Math. Program. 167, 355–379 (2018)

    Article  MathSciNet  Google Scholar 

  14. Kelley, C.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  15. Khamisov, O., Kolosnitsyn, A.: An optimization approach to finding roots of systems of nonlinear equations. IOP Conf. Ser. Mater. Sci. Eng. 537, 042007 (2019)

    Article  Google Scholar 

  16. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part i-convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  Google Scholar 

  17. Milano, F.: Power System Modelling and Scripting. POWSYS, Springer-Verlag, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13669-6

    Book  Google Scholar 

  18. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-3-540-35447-5

    Book  MATH  Google Scholar 

  19. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  20. Ramadas, G., Fernandes, E., Rocha, A.: Finding multiple roots of systems of nonlinear equations by a hybrid harmony search-based multistart method. Appl. Math. Inf. Sci. 12(1), 21–32 (2018)

    Article  MathSciNet  Google Scholar 

  21. Roose, A., Kulla, V., Lomp, M., Meressoo, T.: Test Examples of Systems of Non-linear Equations. Estonian Software and Computer Service Company, Tallin (1990)

    Google Scholar 

  22. Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM J. Numer. Anal. 42(1), 383–408 (2004)

    Article  MathSciNet  Google Scholar 

  23. Semenov, V.Y.: A method to find all the roots of the system of nonlinear algebraic equations based on the krawczyk operator. Cybern. Syst. Anal. 51, 819–825 (2015)

    Article  MathSciNet  Google Scholar 

  24. Semenov, V.: The method of determining all real nonmultiple roots of systems of nonlinear equations. Comput. Math. Math. Phys. 47, 1428–1434 (2007)

    Article  MathSciNet  Google Scholar 

  25. Shary, S.: Finite-dimensional interval analysis. XYZ, Novosibirsk (2020)

    Google Scholar 

  26. Stetter, H.: Numerical Polynomial Algebra. SIAM, New York (2004)

    Google Scholar 

  27. Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math. Comput. 255, 73–83 (2015)

    Google Scholar 

  28. Tao, P.D., An, L.T.H.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(2), 23–46 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Tsoulos, I., Stavrakoudis, A.: On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal. Real World Appl. 11(4), 2465–2471 (2010)

    Article  MathSciNet  Google Scholar 

  30. Wang, W.-X., Shang, Y.-L., Wang, G.S., Zhang, Y.: Finding the roots of system of nonlinear equations by a novel filled function method. Abstract Appl. Anal. 2011. Article ID 209083 (2011)

    Google Scholar 

  31. Yamamura, K., Fujioka, T.: Finding all solutions of nonlinear equations using the dual simplex method. J. Comput. Appl. Math. 152(1–2), 587–595 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their work and valuable comments.

The research was carried out under State Assignment Projects (no. FWEU-2021-0006, FWEW-2021-0003) of the Fundamental Research Program of Russian Federation 2021–2030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Gruzdeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gruzdeva, T.V., Khamisov, O.V. (2021). On Search for All Roots of a System of Quadratic Equations. In: Olenev, N.N., Evtushenko, Y.G., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2021. Lecture Notes in Computer Science(), vol 13078. Springer, Cham. https://doi.org/10.1007/978-3-030-91059-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91059-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91058-7

  • Online ISBN: 978-3-030-91059-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics