
ar
X

iv
:2

10
9.

13
21

6v
2

 [
cs

.D
C

]
 1

8
O

ct
 2

02
1

Extending Lattice linearity for Self-Stabilizing

Algorithms

Arya Tanmay Gupta Sandeep S Kulkarni

{atgupta, sandeep}@msu.edu
Computer Science and Engineering, Michigan State University

Abstract

In this article, we focus on extending the notion of lattice linearity to
self-stabilizing programs. Lattice linearity allows a node to execute its
actions with old information about the state of other nodes and still pre-
serve correctness. It increases the concurrency of the program execution
by eliminating the need for synchronization among its nodes.

The extension –denoted as eventually lattice linear algorithms– is per-
formed with an example of the service-demand based minimal dominating
set (SDDS) problem, which is a generalization of the dominating set prob-
lem; it converges in 2n moves. Subsequently, we also show that the same
approach could be used in various other problems including minimal ver-
tex cover, maximal independent set and graph coloring.

Keywords: eventually lattice linear algorithms, self-stabilization, dominat-
ing set, vertex cover, graph coloring.

1 Introduction

In a distributed program, a node cooperates with other nodes to solve the prob-
lem at hand such as leader election, mutual exclusion, tree construction, domi-
nating set, independent set, etc. There are several models for such distributed
programs. These can be broadly classified as message passing programs or
shared-memory programs. In message passing programs, nodes do not share
memory. Rather, they communicate with each other via messages. On the
other hand, the shared-memory model allows a node to read the memory of
other nodes to solve the given problem.

Implementation of such shared memory programs introduces several chal-
lenges to allow a node to read the state of its neighbors in a consistent fashion.
One solution in this context is that the nodes only execute in a coordinated
manner where when a node is activated by the scheduler, it reads the variables
of other nodes and updates its own state. Furthermore, the scheduler needs
to ensure that any conflicting nodes are not activated at the same time. This
approach, however, is expensive and requires synchronization among nodes.

1

http://arxiv.org/abs/2109.13216v2

To alleviate the issue of consistency while reading remote variables, Garg
(2020) [4] introduced lattice linear predicate detection in combinatorial opti-
mization problems. In [4], it is shown that when an algorithm exploits lattice
linearity of the underlying problem, it preserves correctness even if nodes ex-
ecute with old information. However, this work assumes that the algorithm
begins in a specific initial state and, hence, is not applicable for self-stabilizing
algorithms since a self-stabilizing algorithm guarantees that starting from an ar-
bitrary state, the algorithm reaches a legitimate state (invariant) and remains
there forever. With this intuition, in this work, we extend the results in [4] to
self-stabilizing algorithms.

We proceed as follows. We begin with the problem of service-demand based
minimal dominating set (SDDS) which is a generalization of the dominating set
problem. We devise a self-stabilizing algorithm for SDDS. We scrutinize this
algorithm and disassemble it into two parts, one of which satisfies the lattice
linearity property of [4] if it begins in a feasible state. Furthermore, we show
that the second part of the algorithm ensures that the algorithm reaches a
feasible state. We show that the resulting algorithm is self-stabilizing, and the
algorithm has limited-interference property (to be discussed in Section 5.5) due
to which it is tolerant to the nodes reading old values of other nodes.

We also demonstrate that this approach is generic. It applies to various
other problems including vertex cover, independent set and graph coloring.

1.1 Contributions of the article

• We present a self-stabilizing algorithm for the minimal SDDS problem.
The algorithm can be modified to solve other generalizations of dominating
set present in the literature. The algorithm converges in 2n moves, which
is an improvement over the other algorithms in the literature.

• We extend the notion of lattice linear predicate detection from [4] to in-
troduce the class of lattice linear self-stabilizing algorithms and eventually
lattice linear self-stabilizing algorithms. Such algorithms allow the pro-
gram to converge even when the nodes read old values. This is unlike
the algorithms presented in [4] where it is required that (1) the problems
have only one optimal state, and (2) the program needs to start in specific
initial states.

• Our solution to SDDS can be extended to other problems including mini-
mal vertex cover, maximal independent set and graph coloring problems.
The resulting algorithms are eventually lattice linear and can be modified
to lattice linear self-stabilizing algorithms.

1.2 Organization of the article

In Section 2, we discuss the related work in the literature. In Section 3, we
discuss some notations and definitions that we use in the article. In Section 4,
we describe the algorithm for the service-demand based dominating set problem.

2

In Section 5, we analyze the characteristics of the algorithm and show that it
is eventually lattice linear. In Section 6, we use the structure of eventually
lattice linear self-stabilizing algorithms to develop algorithms for vertex cover,
independent set and graph coloring problems. Finally, we conclude the article
in Section 7.

2 Literature study and discussion on our contri-

bution

Self-stabilizing algorithms for the minimal dominating set problem have been
proposed in several works in the literature, for example, in [18, 8, 15, 6, 2]. The
best convergence time among these works is 4n moves.

Other variations of the dominating set problem are also studied. Fink and
Jacobson (1985) [3] proposed the minimal k-dominating set problem; here, the
task is to compute a minimal set of nodes D such that for each node v ∈ V (G),
v ∈ D or there are at least k neighbors of v in D. When k = 1, the defini-
tion of D here is same as that in the general dominating set problem. Kamei
and Kakugawa (2003) [9] proposed self-stabilizing algorithm for tree networks
under central and distributed schedulers for the minimal k-dominating set; the
converge time is n2 moves. Kamei and Kakugawa (2005) [10] have proposed
a self-stabilizing distributed algorithm which converges in 2n+ 3 rounds; their
algorithm runs on synchronous daemon.

A generalization of the dominating set problem is described in Kobayashi et
al. (2017) [12]. This article assumes the input to include wish sets (of nodes)
for every node. For each node i, either i should be in the dominating set D or
at least one of its wish set must be a subset of D. In this case, the input size
may be exponential. The nodes require to read the latest values of other nodes.

Self-stabilizing algorithms for the vertex cover problem has been studied in
Kiniwa (2005) [11], Astrand and Suomela (2010) [14], and Turau (2010) [16]. A
survey of self-stabilization algorithms on independence, domination and coloring
problems can be found in Guellati and Kheddouci (2010) [7].

Garg (2020) [4] studied the exploitation of lattice linear predicates in several
problems to develop parallel processing algorithms. Lattice linearity ensures
convergence of the system to an optimal solution while the nodes perform exe-
cutions parallely and are allowed to do so without coordination, and are allowed
to perform executions based on the old values of other nodes. Garg (2021) [5]
introduces lattice linearity to dynamic programming problems such as longest
increasing subsequences and knapsack problem. In this approach, the lattice
arises from the computation. We are going to pursue a similar goal for self-
stabilizing problems.

Our SDDS algorithm uses local checking to determine if it is in an incon-
sistent state and local correction to restore it. Thus, it differs from [17] where
global correction in the form of reset is used. Local detection and correction
is also proposed in [1, 13]. The key difference with our work is that we are

3

focusing on scenarios where local detection can be performed without requiring
coordination with other nodes.

3 Preliminaries

3.1 Modeling Algorithms

Throughout the article, we denote G to be an arbitrary graph on which we
apply our algorithms. V (G) is the vertex-set and E(G) is the edge-set of G. In
G, for any node i, Adji is the nodes connected to i in G, and Ni = Adji ∪ {i}.
deg(i) denotes the degree of node i.

Each node i is associated with a set of variables. The algorithm is written
in terms of rules, where each rule for process i is of the form guard −→ action

where guard is a proposition over variables of some nodes which may include the
variables of i itself along with the variables of other nodes. If any of the guards
hold true for some node, we say that the node is enabled. As the algorithm
proceeds, we define a move with reference to a node to be an action in which
it changes its state. A round with reference to a scheduler is a minimum time-
frame where each node is given a chance to evaluate its guards and take action
(if some guard evaluates to true) at least once.

An algorithm is silent if no node is enabled when G reaches an optimal state
(we describe the respective optimal states as we discuss the problems in this
article).

Scheduler/Daemon. A central scheduler/daemon is a scheduler which
chooses only one node to evaluate its guards in a time-step and execute the cor-
responding action. A distributed scheduler/daemon chooses an arbitrary subset
of nodes of V (G) in a time-step to evaluate their guards and execute the cor-
responding actions respectively. A synchronous scheduler/daemon chooses all
the nodes in V (G) in each time-step to evaluate their guards and execute the
corresponding actions respectively together.

Read/Write Model. In the read/write model, we partition the variables
of a node as public variables that can be read by others, and private variables
that are only local to that node. In this model, the rules of the node are allowed
to be either:

(a) read rules, where any node i is allowed to read the public variables of one
or more or all of its neighbors and copies them into a private variable of
i, or

(b) write rules, where i reads only its own variables to update its public vari-
ables.

3.2 Lattice Linear Predicates

Lattice Linearity [4] of a problem is a phenomenon by which all the state vectors
of a global state of a system G form a distributive lattice. The predicate which

4

defines an optimal state of the problem (under which such a lattice forms) is
called a lattice linear predicate. In such a lattice, if the state of a system G is false
according to the predicate, then at least one node i ∈ V (G) can be identified
such that it is forbidden, that is, in order for G to reach an optimal state, i must
change its state. Since this article studies self-stabilization problems, we define
the predicate to be an optimal state with respect to the respective problems.

3.3 The communication model

The nodes of a graph communicate via shared memory. In each action, a node
reads the values of its distance-k neighbors (where value of k depends upon the
specific algorithm) and updates its own state. We make no assumptions about
atomicity with respect to reading the variables. In other words, while one node
is in the middle of updating its state, its neighbors may be updating their owns
state as well. In turn, this means that when node i changes its state (based on
state of node j) it is possible that the state of node j has changed. In other
words, i is taking an action based on an old value of node j. Therefore, our
algorithms will run equally well in a message passing model (with distance-k
flooding), without the requirement of synchronization or locks.

4 Service-Demand based Dominating Set

In this section, we introduce a generalization of the dominating set problem,
the service-demand based dominating set problem and describe an algorithm to
solve it.

Definition 1. Service-demand based dominating set problem (SDDS).
In the minimal service-demand based dominating set problem, the input is a
graph G and a set of services Si and a set of demands Di for each node i in G;
the task is to compute a minimal set D such that for each node i,

1. either i ∈ D, or

2. for each demand d in Di, there exists at least one node j in Adji such that
d ∈ Sj and j ∈ D.

In the following subsection, we present a self-stabilizing algorithm for the
minimal SDDS problem. Each node i is associated with variable st.i with
domain {IN,OUT }. st.i defines the state of i. We define D to be the set
{i ∈ V (G) : st.i = IN}.

4.1 Algorithm for SDDS problem

The list of constants stored in each node is described in the following table. For
a node i, Di is the set of demands of i, Si is the set of services that i can provide
to its neighbors. Di and Si are provided as part of the input.

5

Constant What it stands for
Di the set of demands of node i.
Si the set of services provided by node i.

The list of macros stored in each node is described in the following table.
Recall that D is the set of nodes which currently have the state as IN . Satis-
fied(i) is true if i ∈ D or each demand d in Di is being served by some node j in
Adji. If Removable(i) is true, then D \ {i} is also a dominating set given that
D is a dominating set. Dominators-Of(i) is the set of nodes that are (possi-
bly) dominating node i: if some node j is in Dominators-Of(i), then there is
at least one demand d ∈ Di such that d ∈ Si. We also defined Forbidden(i)
to capture the notion of forbidden in [4] (discussed in Section 3).

Macro What it stands for
D {i ∈ V (G) : st.i = IN}.
Satisfied(i) st.i = IN ∨ (∀d ∈ Di, ∃j ∈ Adji : d ∈ Sj ∧ st.j = IN).
Unsatisfied-DS(i) ¬Satisfied(i).
Removable-DS(i) (∀d ∈ Di : (∃j ∈ Adji : d ∈ Sj ∧ st.j = IN))∧

(∀j ∈ Adji, ∀ d ∈ Dj : d ∈ Si =⇒
(∃k ∈ Adjj , k 6= i : (d ∈ Sk ∧ st.k = IN))).

Dominators-Of(i) {j ∈ Adji, st.j = IN : ∃d ∈ Di : d ∈ Sj} ∪ {i} if st.i = IN

{j ∈ Adji, st.j = IN : ∃d ∈ Di : d ∈ Sj} otherwise.
Forbidden-DS(i) st.i = IN∧ Removable-DS(i)∧

(∀j ∈ Adji, ∀ d ∈ Dj : d ∈ Si =⇒
((∀k ∈ Dominators-Of(j), k 6= i : (d ∈ Sk ∧ st.k = IN)) =⇒
(id.k < id.i ∨ ¬Removable-DS(k)))).

The general idea our algorithm is as follows.

1. We allow a node to enter the dominating set unconditionally if it is un-
satisfied, i.e., Satisfied(i) is false. This ensures that G enters a feasible
state (where D is a dominating set) as quickly as possible.

2. While entering the dominating set is not coordinated with others, leaving
the dominating set is coordinated with neighboring nodes. Node i can
leave the dominating set only if it is removable. But before it does that,
it needs to coordinate with others so that too many nodes do not leave,
creating a race condition. Specifically, if i serves for a demand d in Dj

where j ∈ Adji and the same demand is also served by another node k

(k ∈ Adjj) then i leaves only if (1) id.k < id.i or (2) k is not removable.
This ensures that if some demand d of Dj is satisfied by both i and k both
of them cannot leave the dominating set simultaneously. This ensures that
j will remain dominated.

Thus, the rules for Algorithm 1 are as follows:

Algorithm 1. Rules for node i.

6

Forbidden-DS(i) −→ st.i = OUT .
Unsatisfied-DS(i) −→ st.i = IN .

We decompose Algorithm 1 into two parts: (1) Algorithm 1.1, that only
consists of first guard and action of Algorithm 1 and (2) Algorithm 1.2, that
only consists of the second guard and action of Algorithm 1. We use this de-
composition in some of the following parts of this article section to relate the
algorithm to eventual lattice linearity.

5 Lattice Linear Characteristics of Algorithm 1

In this section, we analyze the characteristics of Algorithm 1 to demonstrate
that it is eventually lattice linear. We proceed as follows. In Section 5.1, we
state the propositions which define the feasible and optimal states of the SDDS
problem, along with some other definitions. In Section 5.2, we show that G

reaches a state where it manifests a (possibly non-minimal) dominating set. In
Section 5.3, we show that after when G reaches a feasible state, Algorithm 1
behaves like a lattice linear algorithm. In Section 5.4, we show that when D is
a minimal dominating set, no nodes are enabled. In Section 5.5, we argue that
because there is a bound on interference between Algorithm 1.1 and 1.2 even
when the nodes read old values, Algorithm 1 is an Eventually Lattice Linear
Self-Stabilizing (ELLSS) algorithm. In Section 5.6, we study the time and space
complexity attributes of Algorithm 1.

5.1 Propositions stipulated by the SDDS problem

Notice that the SDDS problem stipulates that the nodes whose state is IN must
collectively form a dominating set. Formally, we represent this proposition as
P ′

d which is defined as follows.

P ′

d(D) ≡ ∀i ∈ V (G) : (i ∈ D ∨ (∀d ∈ Di, ∃j ∈ Adji : (d ∈ Sj ∧ j ∈ D))).

The SDDS problem stipulates an additional condition that D should be a min-
imal dominating set. We formally describe this proposition Pd as follows.

Pd(D) ≡ P ′

d(D) ∧ (∀i ∈ D,¬P ′

d(D \ {i})).

If P ′

d(D) is true, then G is in a feasible state. And, if Pd(D) is true, then G

is in an optimal state.
Based on the above definitions , we define two scores with respect to the

global state, RANK and BADNESS. RANK determines the number of nodes
needed to be added to D to change D to a dominating set. BADNESS deter-
mines the number of nodes that are needed to be removed from D to make it a
minimal dominating set, given that D is a (possibly non-minimal) dominating
set. Formally, we define RANK and BADNESS as follows.

Definition 2. RANK(D) ≡ min{|D′| − |D| : P ′

d(D
′) ∧ D ⊆ D′}.

Definition 3. BADNESS(D) ≡ max{|D| − |D′| : P ′

d(D
′) ∧D′ ⊆ D}.

7

5.2 Guarantee to Reach a Feasible State by Algorithm 1.2

In this subsection, we show that if the nodes execute Algorithm 1.2 only, then
G is guaranteed to reach a feasible state where D is a (possibly non-minimal)
dominating set.

Lemma 1. Let t.D be the value of D at the beginning of round t. If t.D is not
a dominating set then (t+ 1).D is a dominating set.

Proof. Let i be a node such that i ∈ t.D and i 6∈ (t + 1).D, i.e., i leaves the
dominating set in round t. This means that i will remain satisfied and each
node in Adji is satisfied, even when i is removed. This implies that i will not
reduce the feasibility of t.D; it will not increase the value of RANK.

Now let ℓ be a node such that ℓ 6∈ t.D which is not satisfied when it evaluates
its guards in round t. This implies that ∃ d ∈ Dℓ such that d is not present in
Sj for any j ∈ Adjℓ. According to the algorithm, the guard of the second action
is true for ℓ. This implies that st.ℓ will be set to IN .

It can also be possible for the node ℓ that it is satisfied when it evaluates
its guards in round t. This may happen if some other nodes around ℓ already
decided to move to D, and as a result ℓ is now satisfied. Hence ℓ 6∈ (t + 1).D
and we have that ℓ is dominated at round t+ 1.

Therefore, we have that (t + 1).D is a dominating set, which may or may
not be minimal.

By Lemma 1, we have that if the G is in a state where RANK > 0 then by
the next round, RANK will be 0.

5.3 Lattice Linearity of Algorithm 1.1

In the following lemma, we show that Algorithm 1.1 is lattice linear.

Lemma 2. If t.D is a non-minimal dominating set then according to Algo-
rithm 1 (more specifically, Algorithm 1.1), there exists at least one node such
that G cannot reach a minimal dominating set until that node is removed from
the dominating set.

Proof. Since D is a dominating set, we have that the second guard is not true
for any node in G.

Since D is not minimal, there exists at least one node that must be removed
in order to make D minimal. Let S′ be the set of nodes which are removable.
Let M be some node in S′. If M is not serving any node, then Forbidden(M)
is trivially true. Otherwise there exists at least one node j which is served by
M , that is, ∃d ∈ Dj : d ∈ SM . We study two cases which are as follows: (1)
for some node j served by M , there does not exist a node b ∈ S′ which serves
j, and (2) for any node b ∈ S′ such that M and b serve some common node j,
id.b < id.M .

In the first case, M cannot be removed because Removable(M) is false and,
hence, M cannot be in S′, thereby leading to a contradiction. In the second

8

case, Forbidden(M) is true and Forbidden(b) is false since id.b < id.M .
Thus, node b cannot leave the dominating set in that b cannot leave until M
leaves. In both the cases, we have that j stays dominated.

Since ID of every node is distinct, we have that there exists at least one node
M for which Forbidden(M) is true. For example, Forbidden(M) is true for
the node with the highest ID in S′; G cannot reach a minimal dominating set
until M is removed from the dominating set.

From Lemma 2, it follows that Algorithm 1.1 satisfies the condition of lattice
linearity defined in Section 3. It follows that if we start from a state where D is
a (possibly non-minimal) dominating set and execute Algorithm 1.1 then it will
reach a state where D is a minimal dominating set even if nodes are executing
with old information about others. Next, we have the following result which
follows from Lemma 2.

Lemma 3. Let t.D be the value of D at the beginning of round t. If t.D is
a non-minimal dominating set then |(t + 1).D| ≤ |t.D| − 1, and (t + 1).D is a
dominating set.

Proof. From Lemma 2, at least one node M (including the maximum ID node
in S′ from the proof of Lemma 2) would be removed in round t. Furthermore,
since D is a dominating set, Unsatisfied(i) is false at every node i. Thus, no
node is added to D in round t. Thus, the |(t+ 1).D| ≤ |t.D| − 1.

For any node M that is removable, Forbidden(i) is true only if any node j
which is (possibly) served by M has other neighbors (of a lower ID) which serve
the demands which M is serving to it. This guarantees that j stays dominated
and hence (t+ 1).D is a dominating set.

5.4 Termination of Algorithm 1

The following lemma studies the action of Algorithm 1 when D is a minimal
dominating set.

Lemma 4. Let t.D be the value of D at the beginning of round t. If D is a
minimal dominating set, then (t+ 1).D = t.D.

Proof. Since D is a dominating set, Satisfied(i) is true for every node in V (G).
Hence, the second action is disabled for every node in V (G). Since D is minimal,
Removable(i) is false for every node in D. Hence, the first action is disabled
at every node i in D. Thus, D remains unchanged.

5.5 Eventual Lattice Linearity of Algorithm 1

Lemma 2 showed that Algorithm 1.1 is lattice linear. In this subsection, we
make additional observations about Algorithm 1 to generalize the notion of
lattice linearity to eventually lattice linear algorithms. We have the following
observations.

9

1. From Lemma 1, starting from any state, Algorithm 1.2 will reach a feasible
state even if a node reads old information about the neighbors. This is
due to the fact that Algorithm 1.2 only adds nodes to D.

2. From Lemma 2, if we startG in a feasible state where no node has incorrect
information about the neighbors in the initial state then Algorithm 1.1
reaches a minimal dominating set. Note that this claim remains valid
even if the nodes execute actions of Algorithm 1.1 with old information
about the neighbors as long as the initial information they use is correct.

3. Now, we observe that Algorithm 1.1 and Algorithm 1.2 have very limited
interference with each other, and so an arbitrary graph G will reach an
optimal state even if nodes are using old information. In this case, observe
that any node i can execute the action of the first guard incorrectly at most
once. After going OUT incorrectly, when it reads the correct information
about other nodes, then it will execute the guard of the second action and
change its state to IN , after which, it can go out only if it evaluates that
Forbidden(i) is true.

From the above observations, if we allow the nodes to read old values, then
the nodes can violate the feasibility of G finitely many times and so G will
eventually reach a feasible state and stay there forever. We introduce the term
Eventually Lattice Linear Self-stabilizing algorithms (ELLSS). Before defining
ELLSS algorithms, we define the class of Lattice Linear Algorithms (LL) as
follows.

Definition 4. Lattice Linear Algorithms. LL algorithms are the algorithms
under which a system G is forced to traverse a lattice of states and proceed to
reach an optimal solution.

Note that LL is a generalization of the notion of lattice linearity introduced
in [4]. In [4], the existence of the lattice arises from the problem at hand. In
LL, it arises by constraints imposed by the algorithm.

The class of ELLSS algorithms can be defined as follows.

Definition 5. Eventually Lattice Linear Self-Stabilizing Algorithms.
An algorithm is ELLSS if its rules can be split into F1 and F2 and there exists
a predicate R such that

(a) Any computation of F1[]F2, that is, the union of the actions in F1 and
F2, eventually reaches a state where R is stable in F1[]F2, i.e., R is true
and remains true subsequently (even if the nodes read old values of other
nodes),

(b) F2 is an LL algorithm, given that it starts in a state in R,

(c) Actions in F1 are disabled once the program reaches R.

10

In Algorithm 1, F1 corresponds to Algorithm 1.2 and F2 corresponds to
Algorithm 1.1. And, the above discussion shows that this algorithm satisfies
the properties of Definition 5 and R corresponds to the predicate that D is a
dominating set, i.e., R ≡ P ′

d(D).
Finally, we note that in Algorithm 1, we chose to be aggressive for a node

to enter the dominating set but cautious to leave the dominating set. A sim-
ilar ELLSS SDDS algorithm is feasible where a node is cautious to enter the
dominating set but aggressive to leave it.

5.6 Analysis of Algorithm 1: Time and Space complexity

Theorem 1. Algorithm 1 converges in 2n moves.

Proof. In the beginning of the algorithm, let G be the input graph. Assume for
contradiction that D is not a dominating set as per the input graph G. Let V ′

be the set of nodes, V ′ ⊆ V (G)\D such that each node i in V ′, i is not satisfied.
It means that the guard of the second action holds true for i. Therefore, we
have that i will execute the second action during the first round (or within first
n moves) and G will enter a feasible state.

The above observation implies that by the end of the first round, D becomes
a dominating set. D may or may not be a minimal dominating set. So in each
subsequent time step, D will reduce in size by at least one node (by Lemma 2)
but still be a valid dominating set. So we have that Algorithm 1 will converge
within n moves after when G enters a feasible state.

Corollary 1. D will be feasible within 1 round. After entering a feasible state,
D will be optimal within n moves.

Corollary 2. Algorithm 1 is self-stabilizing and silent.

Lemma 5. At any time-step, a node will take O((∆)4 × (maxd)
2) time, where

1. ∆ is the maximum degree of any node in V (G),

2. maxd is the total number of distinct demands made by all the nodes in
V (G).

Proof. There are 3 expressions in the guard which are separated by an “and”
(∧) operator.

First Expression: “st.i = IN” takes constant amount of time.
Second expression: Second expression is a Removable macro, which is a

conjunction of two expressions. The first expression contains a universal quan-
tifier (∀d ∈ Di) nested with an existential quantifier (∃j ∈ Adji). The second
expression contains two universal quantifiers (∀j ∈ Adji and ∀d ∈ Dj) and an
existential quantifier (∃k ∈ Adjj) nested one after the other. Therefore, the time
complexity of this expression can be evaluated to be of the time complexity of
∆2 ×maxd.

Third expression: The second expression, there are 4 objects as follows.

11

1. A universal quantifier - ∀j ∈ Adji.

2. A universal quantifier - ∀d ∈ Dj .

3. A universal quantifier - ∀k ∈ Domintors-Of(j).

4. The Removable macro.

Therefore, the time complexity to compute the expression evaluates to be in
the order of the product of (|Di|)

2, and (|Adji|)
4, which is upper bounded by

O(∆4 × (maxd)
2).

The total time complexity to evaluate the first guard computes to be O((∆)4×
(maxd)

2).
Assuming that the services (demands) are stored in any node in an array

of length equal to the total number of services (demands), and the assuming
that the index of the service is equal to the encoding of the service, containing
1 at the corresponding index iff the corresponding service (demand) is being
provided (demanded) by that node, we can compute the presence of a service
(demand) in that node in O(1) time. Therefore, we can compute d ∈ Sk or
d ∈ Sj in a constant amount of time.

The second guard has the time complexity of O(∆ ×maxd). Therefore, it
does not affect the order of the resultant time-complexity.

Corollary 3. The space required to store the services and demands in each node
is O(maxd), where maxd is the total number of distinct demands made by all
the nodes in V (G).

6 Other Examples

The sequence of states of G under Algorithm 1 is essentially divided into two
phases: (1) the system entering a feasible state (reduction of RANK to zero),
and then (2) the system entering an optimal state (reduction of BADNESS to
zero). Algorithm 1 first takes the system to a feasible state where RANK =
0 and then it takes the system to an optimal state where RANK = 0 ∧
BADNESS = 0.

This notion was used to define the concept of ELLSS algorithms. The notion
of ELLSS algorithms can be extended to numerous other problems where the
optimal global state can be defined in terms of a minimal (or maximal) set S
of nodes. This includes the vertex cover problem, independent set problem and
their variants. Once the propositions regarding S is defined where its structure
depends on some relation of nodes with their neighbours, the designed algorithm
can decide which node to put IN the set and which nodes to take OUT .

In this section, we describe algorithms for vertex cover and independent set,
along with graph coloring, which follow from the structure that we have laid
for the SDDS problem. Thus, the algorithms we describe for these problems
are also ELLSS algorithms. The proofs of correctness follow from the proofs of
correctness described above for the SDDS problem.

12

6.1 Vertex cover

In the vertex cover (VC) problem, the input is an arbitrary graph G, and the
task is to compute a minimal set V such that for any edge {i, j} ∈ E(G),
(i ∈ V) ∨ (j ∈ V). If a node i is in V , then st.i = IN , otherwise st.i = OUT .
To develop an algorithm for VC, we utilize the macros in the following table.

Removable-VC(i) (∀j ∈ Adji, st.j = IN).
Unsatisfied-VC(i) (st.i = OUT) ∧ (∃j ∈ Adji : st.j = OUT).
Forbidden-VC(i) (st.i = IN) ∧ (Removable-VC(i))∧

(∀j ∈ Adji : (id.j < id.i) ∨ ¬Removable-VC(j)).

The proposition P ′

v defining a feasible state and the proposition Pv defining
the optimal state can be defined as follows.

P ′

v(V) ≡ ∀i ∈ V (G) : ((i ∈ V) ∨ (∀j ∈ Adji, j ∈ V)).
Pv(V) ≡ P ′

v(V) ∧ (∀i ∈ V ,¬P ′

v(V − {i})).

Based on the definitions above, the algorithm for VC is described as follows.

Algorithm 2. Rules for node i.

Forbidden-VC(i) −→ st.i = OUT .
Unsatisfied-VC(i) −→ st.i = IN .

Once again, this is an ELLSS algorithm in that it satisfies the conditions
in Definition 5, where F1 corresponds to the second action of Algorithm 2,
F2 corresponds to its first action, and R ≡ P ′

v(V). Thus, starting from any
arbitrary state, the algorithm eventually reaches a state where V is a minimal
vertex cover.

Note that in Algorithm 2, the definition of Removable relies only on the
information about distance-1 neighbors. Hence, the evaluation of guards take
O(∆3) time. In contrast, (the standard) dominating set problem requires infor-
mation of distance-2 neighbors to evaluate Removable. Hence, the evaluation
of guards in that would take O(∆4) time.

6.2 Independent set

In VC and SDDS problems, we tried to reach a minimal set. Here on the other
hand, we have to obtain a maximal set. In the independent set (IS) problem,
the input is an arbitrary graph G, and the task is to compute a maximal set I
such that for any two nodes i ∈ I and j ∈ I, if i 6= j, then {i, j} 6= E(G).

The proposition P ′

i defining a feasible state and the proposition Pi defining
the optimal state can be defined as follows.

P ′

i(I) ≡ ∀i ∈ V (G) : ((i 6∈ I) ∨ (∀j ∈ Adji : j 6∈ I)).
Pi(I) ≡ P ′

i(I) ∧ (∀i ∈ V (G) \ I,¬P ′

i(I ∪ {i})).

If a node i is in I, then st.i = IN , otherwise st.i = OUT . To develop the
algorithm for independent set, we define the macros in the following table.

13

Addable(i) (∀j ∈ Adji, st.j = OUT).
Unsatisfied-IS(i) (st.i = IN) ∧ (∃j ∈ Adji : st.j = IN).
Forbidden-IS(i) st.i = OUT∧ Addable(i)∧

(∀j ∈ Adji : ((id.j < id.i) ∨ (¬Addable(j))).

Based on the definitions above, the algorithm for IS is described as follows.

Algorithm 3. Rules for node i.

Forbidden-IS(i) −→ st.i = IN .
Unsatisfied-IS(i) −→ st.i = OUT .

This algorithm is an ELLSS algorithm as well: as per Definition 5, F1 cor-
responds to the second action of Algorithm 2, F2 corresponds to its first action,
and R ≡ P ′

i(I). Thus, starting from any arbitrary state, the algorithm eventu-
ally reaches a state where I is a maximal independent set.

In Algorithm 3, the definition of Addable relies only on the information
about distance-1 neighbors. Hence, the evaluation of guards take O(∆3) time.

6.3 Coloring

In this section, we extend ELLSS algorithms to graph coloring. In the graph
coloring (GC) problem, the input is a graph G and the task is to assign colors
to all the nodes of G such that no two adjacent nodes have the same color.

Unlike vertex cover, dominating set or independent set, coloring does not
have a binary domain. Instead, we correspond the equivalence of changing the
state to IN to the case where a node increases its color. And, the equivalence
of changing the state to OUT corresponds to the case where a node decreases
its color. With this intuition, we define the macros as shown in the following
table.

Conflicted(i) (∃j ∈ Adji : (color.j = color.i)).
Subtractable(i) ∃c ∈ [1 : color.i− 1] : ((∀j ∈ Adji : color.j 6= c)).
Unsatisfied-GC(i) Conflicted(i).
Forbidden-GC(i) ¬Conflicted(i) ∧ Subtractable(i)∧

(∀j ∈ Adji : (id.j < id.i ∨ ¬Subtractable(j))).

The proposition P ′

c defining a feasible state and the proposition Pc defining
an optimal state is defined below. Pc is true when all the nodes have lowest
available color, that is, for any node i and for all colors c in [1 : deg(i) + 1],
either c should be greater than color.i or c should be equal to the color of one
of the neighbors j of i.

P ′

c ≡ ∀i ∈ V (G), ∀j ∈ Adji : color.i 6= color.j.
Pc ≡ P ′

c ∧ (∀i ∈ V (G) : (∀c ∈ [1 : color.i− 1] :
(c < color.i =⇒ (∃j ∈ Adji : color.j = c)))).

14

Unlike SDDS, VC and IS, in graph coloring (GC), each node is associated
with a variable color that can take several possible values (the domain can
be as large as the set of natural numbers). As mentioned above, the action of
increasing the color is done whenever a conflict is detected. However, decreasing
the color is achieved only with coordination with others. Thus, the actions of
the algorithm are shown in Algorithm 4.

Algorithm 4. Rules for node i.

Forbidden-GC(i) −→ color.i = min
c

{c ∈ [1 : color.i− 1] : (∀j ∈ Adji : color.j 6= c)}.

Unsatisfied-GC(i) −→ color.i = color.i+ id.i.

Algorithm 4 is an ELLSS algorithm: according to Definition 5, F1 corre-
sponds to the second action of Algorithm 2, F2 corresponds to its first action,
and R ≡ P ′

c. Thus, starting from any arbitrary state, the algorithm eventually
reaches a state where no two adjacent nodes have the same color and no node
can reduce its color.

7 Conclusion

We extended lattice linear algorithms from [4] to the context of self-stabilizing
algorithms. The approach in [4] relies on the assumption that the algorithm
starts in specific initial states and, hence, it is not directly applicable in self-
stabilizing algorithms. A key benefit of lattice linear algorithms is that correct-
ness is preserved even if nodes are reading old information about other nodes.
Hence, they allow a higher level of concurrency.

We began with the service-demand based dominating set (SDDS) problem
and designed a self-stabilizing algorithm for the same. Subsequently, we ob-
served that it consists of two parts: One part is a lattice linear algorithm that
constructs a minimal dominating set if it starts in some valid initial states,
say R. The second part makes sure that it gets the program in a state where
R becomes true and stays true forever. We also showed that these parts can
only have bounded interference thereby guaranteeing that the overall program
is self-stabilizing even if the nodes read old values of other nodes.

We introduced the notion of eventually lattice-linear self-stabilization to cap-
ture such algorithms. We demonstrated that it is possible to develop eventually
lattice linear self-stabilizing (ELLSS) algorithms for vertex cover, independent
set and graph coloring.

We note that Algorithms 1-4 could also be designed to be lattice linear self-
stabilizing algorithms (LLSS) if we change the second action of these algorithms
to account for the neighbors in the same fashion as done for the second action.

The algorithms 1-4 converge under central, distributed, or synchronous dae-
mon. Due to the property of ELLSS, its straightforward implementation in
read/write model is also self-stabilizing. Intuitively, in a straightforward trans-
lation, each remote variable is replaced by a local copy of that variable and

15

this copy is updated asynchronously. Normally, such straightforward transla-
tion into read/write atomicity does not preserve self-stabilization. However, the
ELLSS property of the self-stabilization ensures correctness of the straightfor-
ward translation.

As future work, an interesting direction can be to study which class of prob-
lems can the paradigm of LL and ELLSS algorithms be extended to. Also, it is
interesting to study if we can implement approximation algorithms under these
paradigms.

References

[1] Arora, A., and Gouda, M. Closure and convergence: a foundation of
fault-tolerant computing. IEEE Transactions on Software Engineering 19,
11 (1993), 1015–1027.

[2] Chiu, W. Y., Chen, C., and Tsai, S.-Y. A 4n-move self-stabilizing algo-
rithm for the minimal dominating set problem using an unfair distributed
daemon. Information Processing Letters 114, 10 (2014), 515–518.

[3] Fink, J. F., and Jacobson, M. S. N-Domination in Graphs. John Wiley
& Sons, Inc., USA, 1985, p. 283–300.

[4] Garg, V. K. Predicate detection to solve combinatorial optimization
problems. In Proceedings of the 32nd ACM Symposium on Parallelism
in Algorithms and Architectures (New York, NY, USA, 2020), SPAA ’20,
Association for Computing Machinery, p. 235–245.

[5] Garg, V. K. A lattice linear predicate parallel algorithm for the dynamic
programming problems. CoRR abs/2103.06264 (2021).

[6] Goddard, W., Hedetniemi, S. T., Jacobs, D. P., Srimani, P. K.,

and Xu, Z. Self-stabilizing graph protocols. Parallel Processing Letters
18, 01 (2008), 189–199.

[7] Guellati, N., and Kheddouci, H. A survey on self-stabilizing algo-
rithms for independence, domination, coloring, and matching in graphs. J.
Parallel Distrib. Comput. 70, 4 (Apr. 2010), 406–415.

[8] Hedetniemi, S., Hedetniemi, S., Jacobs, D., and Srimani, P. Self-
stabilizing algorithms for minimal dominating sets and maximal indepen-
dent sets. Computers & Mathematics with Applications 46, 5 (2003), 805–
811.

[9] Kamei, S., and Kakugawa, H. A self-stabilizing algorithm for the dis-
tributed minimal k-redundant dominating set problem in tree networks. In
Proceedings of the Fourth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies (2003), pp. 720–724.

16

[10] Kamei, S., and Kakugawa, H. A self-stabilizing approximation algo-
rithm for the distributed minimum k-domination. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E88-A, 5 (May 2005), 1109–1116.

[11] Kiniwa, J. Approximation of self-stabilizing vertex cover less than 2. In
Self-Stabilizing Systems (Berlin, Heidelberg, 2005), S. Tixeuil and T. Her-
man, Eds., Springer Berlin Heidelberg, pp. 171–182.

[12] Kobayashi, H., Kakugawa, H., and Masuzawa, T. Brief announce-
ment: A self-stabilizing algorithm for the minimal generalized dominating
set problem. In Stabilization, Safety, and Security of Distributed Systems
(Cham, 2017), P. Spirakis and P. Tsigas, Eds., Springer International Pub-
lishing, pp. 378–383.

[13] Leal, W., and Arora, A. Scalable self-stabilization via composition. In
24th International Conference on Distributed Computing Systems, 2004.
Proceedings. (2004), pp. 12–21.

[14] Åstrand, M., and Suomela, J. Fast distributed approximation algo-
rithms for vertex cover and set cover in anonymous networks. In Pro-
ceedings of the Twenty-Second Annual ACM Symposium on Parallelism
in Algorithms and Architectures (New York, NY, USA, 2010), SPAA ’10,
Association for Computing Machinery, p. 294–302.

[15] Turau, V. Linear self-stabilizing algorithms for the independent and dom-
inating set problems using an unfair distributed scheduler. Information
Processing Letters 103, 3 (2007), 88–93.

[16] Turau, V. Self-stabilizing vertex cover in anonymous networks with op-
timal approximation ratio. Parallel Processing Letters 20, 02 (2010), 173–
186.

[17] Varghese, G. Self-Stabilization by Local Checking and Correction.
phdthesis, Massachusetts Institute of Technology, Oct. 1992.

[18] Xu, Z., Hedetniemi, S. T., Goddard, W., and Srimani, P. K. A
synchronous self-stabilizing minimal domination protocol in an arbitrary
network graph. In Distributed Computing - IWDC 2003 (Berlin, Heidel-
berg, 2003), S. R. Das and S. K. Das, Eds., Springer Berlin Heidelberg,
pp. 26–32.

17

	1 Introduction
	1.1 Contributions of the article
	1.2 Organization of the article

	2 Literature study and discussion on our contribution
	3 Preliminaries
	3.1 Modeling Algorithms
	3.2 Lattice Linear Predicates
	3.3 The communication model

	4 Service-Demand based Dominating Set
	4.1 Algorithm for SDDS problem

	5 Lattice Linear Characteristics of algorithm:rules-ds
	5.1 Propositions stipulated by the SDDS problem
	5.2 Guarantee to Reach a Feasible State by algorithm:rules-ds.2
	5.3 Lattice Linearity of algorithm:rules-ds.1
	5.4 Termination of algorithm:rules-ds
	5.5 Eventual Lattice Linearity of algorithm:rules-ds
	5.6 Analysis of algorithm:rules-ds: Time and Space complexity

	6 Other Examples
	6.1 Vertex cover
	6.2 Independent set
	6.3 Coloring

	7 Conclusion

