Skip to main content

One-Class Classification Approach in Accelerometer-Based Remote Monitoring of Physical Activities for Healthcare Applications

  • Chapter
  • First Online:
Integrating Artificial Intelligence and IoT for Advanced Health Informatics

Part of the book series: Internet of Things ((ITTCC))

  • 473 Accesses

Abstract

Human activity recognition (HAR) enables numerous application scenarios in ambient assisted living thanks to IoT integration. Healthcare is one of the most prominent use cases of HAR serving individuals who suffer from aging or disabilities as well as healthy people. Remote monitoring of daily activities within home environment may offer assistance in tracking adherence of patients to therapeutical procedures such as exercise monitoring. Within an IoT framework, the type of sensors used influences usability of the HAR system. Accelerometers introduce a noninvasive sensing option as opposed to cameras which intrude into users’ privacy. Recognition of target activities when they are performed among other activities brings about challenges. Typical multi-class classification employed in such recognition tasks necessitates training data collection for all activity types which can be encountered in the prediction stage. Due to unlimited variety of daily living activities, the number of activity classes for which training data should be collected is infinitely many. Expressing the recognition problem in terms of one-class classification (OCC) architecture can aid in resolving this bottleneck. In this chapter, we propose an OCC-based HAR architecture with IoT integration. In our OCC scheme, we utilize artificial data generation (ADG) to generate training data for the negative class based on the target class. In the proposed model, the target class is the only class for which training data are collected. The OCC scheme enables recognizing the target class when the other class is represented with artificially generated data. We present the results of an experimental study for our OCC model on a dataset consisting of ambulatory and static activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brusey, J., Rednic, R., Gaura, E.I., Kemp, J., Poole, N.: Postural activity monitoring for increasing safety in bomb disposal missions. Meas. Sci. Technol. 20(7), 075204 (2009). https://doi.org/10.1088/0957-0233/20/7/075204

    Article  Google Scholar 

  2. Cabral, G.G., de Oliveira, A.L.I.: One-class classification for heart disease diagnosis. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2551–2556 (2014)

    Google Scholar 

  3. Catal, C., Tufekci, S., Pirmit, E., Kocabag, G.: On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl. Soft Comput. 37, 1018–1022 (2015)

    Article  Google Scholar 

  4. Chae, S.H., Kim, Y., Lee, K.S., Park, H.S.: Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: Prospective comparative study. JMIR Mhealth Uhealth 8(7), e17216 (2020). http://mhealth.jmir.org/2020/7/e17216/

    Article  Google Scholar 

  5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  6. Chen, D., Yan, C., Wang, M.: A new one-class classification method with multiple encoder-decoder pairs for images. In: 2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 2, pp. 116–121 (2019)

    Google Scholar 

  7. Cheng, W., Scotland, A., Lipsmeier, F., Kilchenmann, T., Jin, L., Schjodt-Eriksen, J., Wolf, D., Zhang-Schaerer, Y., Garcia, I.F., Siebourg-Polster, J., Soto, J., Verselis, L., Martin-Facklam, M., Boess, F., Koller, M., Grundman, M., Monsch, A., Postuma, R., Ghosh, A., Kremer, T., Taylor, K., Czech, C., Gossens, C., Lindemann, M.: Human activity recognition from sensor-based large-scale continuous monitoring of Parkinson’s disease patients. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 249–250 (2017)

    Google Scholar 

  8. Chowdhury, M.E.H., Alzoubi, K., Khandakar, A., Khallifa, R., Abouhasera, R., Koubaa, S., Ahmed, R., Hasan, A.: Wearable real-time heart attack detection and warning system to reduce road accidents. Sensors 19(12) (2019). https://www.mdpi.com/1424-8220/19/12/2780

  9. Chriki, A., Touati, H., Snoussi, H., Kamoun, F.: Deep learning and handcrafted features for one-class anomaly detection in UAV video. Multimedia Tools Appl. 80(2), 2599–2620 (2021)

    Article  Google Scholar 

  10. Cvetković, B., Janko, V., Romero, A.E., Kafalı, Ö., Stathis, K., Luštrek, M.: Activity recognition for diabetic patients using a smartphone. J. Med. Syst. 40(12), 256 (2016). https://doi.org/10.1007/s10916-016-0598-y

    Article  Google Scholar 

  11. Das, B., Cook, D.J., Krishnan, N.C., Schmitter-Edgecombe, M.: One-class classification-based real-time activity error detection in smart homes. IEEE J. Sel. Top. Signal Process. 10(5), 914–923 (2016)

    Article  Google Scholar 

  12. Fatemifar, S., Awais, M., Arashloo, S.R., Kittler, J.: Combining multiple one-class classifiers for anomaly based face spoofing attack detection. In: 2019 International Conference on Biometrics (ICB), pp. 1–7 (2019)

    Google Scholar 

  13. Fernández-Francos, D., Fontenla-Romero, Alonso-Betanzos, A.: One-class convex hull-based algorithm for classification in distributed environments. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–11 (2017)

    Google Scholar 

  14. Garcia-Constantino, M., Konios, A., Mustafa, M.A., Nugent, C., Morrison, G.: Ambient and wearable sensor fusion for abnormal behaviour detection in activities of daily living. In: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 1–6 (2020)

    Google Scholar 

  15. Girard, N., Trullo, R., Barrat, S., Ragot, N., Ramel, J.Y.: Interactive definition and tuning of one-class classifiers for document image classification. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 358–363 (2016)

    Google Scholar 

  16. Guha, A., Samanta, D.: Hybrid approach to document anomaly detection: An application to facilitate RPA in title insurance. Int. J. Autom. Comput. 18(1), 55–72 (2021)

    Article  Google Scholar 

  17. Hempstalk, K., Frank, E., Witten, I.H.: One-Class Classification by Combining Density and Class Probability Estimation, pp. 505–519. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

    Google Scholar 

  18. Hosseini, A., Fazeli, S., v. Vliet, E., Valencia, L., Habre, R., Sarrafzadeh, M., Bui, A.: Children activity recognition: Challenges and strategies. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4331–4334 (2018)

    Google Scholar 

  19. Jansi, R.: Hierarchical evolutionary classification framework for human action recognition using sparse dictionary optimization. Swarm and Evolutionary Computation, p. 100873 (2021)

    Google Scholar 

  20. Jeon, S., Park, T., Paul, A., Lee, Y., Son, S.H.: A wearable sleep position tracking system based on dynamic state transition framework. IEEE Access 7, 135742–135756 (2019)

    Article  Google Scholar 

  21. Jun, K., Choi, S.: Unsupervised end-to-end deep model for newborn and infant activity recognition. Sensors 20(22) (2020). https://www.mdpi.com/1424-8220/20/22/6467

  22. Karácsony, T., Loesch-Biffar, A.M., Vollmar, C., Noachtar, S., Cunha, J.P.S.: A deep learning architecture for epileptic seizure classification based on object and action recognition. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4117–4121 (2020)

    Google Scholar 

  23. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Proceedings of the 20th Irish Conference on Artificial Intelligence and Cognitive Science, AICS’09, pp. 188–197. Springer-Verlag, Berlin, Heidelberg (2010)

    Google Scholar 

  24. Khan, A.M., Lee, Y.., Lee, S.Y., Kim, T..: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: 2010 5th International Conference on Future Information Technology, pp. 1–6 (2010)

    Google Scholar 

  25. Khan, A.M., Lee, Y., Lee, S.Y., Kim, T.: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf. Technol. Biomed. 14(5), 1166–1172 (2010)

    Article  Google Scholar 

  26. Kim, K., Hassan, M.M., Na, S., Huh, E.: Dementia wandering detection and activity recognition algorithm using tri-axial accelerometer sensors. In: Proceedings of the 4th International Conference on Ubiquitous Information Technologies Applications, pp. 1–5 (2009). https://doi.org/10.1109/ICUT.2009.5405672

  27. Kim, S.H., Kim, H.J., Kim, J.Y.: GAN-based one-class classification for personalized image retrieval. In: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 771–774 (2018)

    Google Scholar 

  28. Koceska, N., Komadina, R., Simjanoska, M., Koteska, B., Strahovnik, A., Jošt, A., Maček, R., Madevska-Bogdanova, A., Trajkovik, V., Tasič, J.F., Trontelj, J.: Mobile wireless monitoring system for prehospital emergency care. Eur. J. Trauma Emerg. Surg. 46(6), 1301–1308 (2020)

    Article  Google Scholar 

  29. Krawczyk, B.: Forming ensembles of soft one-class classifiers with weighted bagging. N. Gener. Comput. 33(4), 449–466 (2015)

    Article  Google Scholar 

  30. Krawczyk, B., Woźniak, M.: Accuracy and diversity in classifier selection for one-class classification ensembles. In: 2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL), pp. 46–51 (2013)

    Google Scholar 

  31. Krawczyk, B., Woźniak, M.: Dynamic classifier selection for one-class classification. Knowl. Based Syst. 107(Supplement C), 43–53 (2016)

    Google Scholar 

  32. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010)

    Google Scholar 

  33. Li, C., Hu, X., Zhang, L.: The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Comput. Sci. 112, 2328–2334 (2017). Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 21st International Conference, KES-20176-8 September 2017, Marseille, France

    Google Scholar 

  34. Li, X., Peng, J., Obaidat, M.S., Wu, F., Khan, M.K., Chen, C.: A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. IEEE Syst. J. 14(1), 39–50 (2020)

    Article  Google Scholar 

  35. Li, X., Wang, Y., Zhang, B., Ma, J.: PSDRNN: An efficient and effective HAR scheme based on feature extraction and deep learning. IEEE Trans. Ind. Inf. 16(10), 6703–6713 (2020)

    Article  Google Scholar 

  36. Liu, J., Miao, Q., Sun, Y., Song, J., Quan, Y.: Modular ensembles for one-class classification based on density analysis. Neurocomputing 171, 262–276 (2016)

    Article  Google Scholar 

  37. Mannini, A., Intille, S.S.: Classifier personalization for activity recognition using wrist accelerometers. IEEE J. Biomed. Health Inform. 23(4), 1585–1594 (2019)

    Article  Google Scholar 

  38. Matsubara, Y., Nishimura, H., Samura, T., Yoshimoto, H., Tanimoto, R.: Screen unlocking by spontaneous flick reactions with one-class classification approaches. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 752–757 (2016)

    Google Scholar 

  39. Mitchell, E., Monaghan, D., O’Connor, N.E.: Classification of sporting activities using smartphone accelerometers. Sensors 13(4), 5317–5337 (2013). https://www.mdpi.com/1424-8220/13/4/5317

    Article  Google Scholar 

  40. Morton, R.W., Elphick, H.E., Rigby, A.S., Daw, W.J., King, D.A., Smith, L.J., Everard, M.L.: STAAR: a randomised controlled trial of electronic adherence monitoring with reminder alarms and feedback to improve clinical outcomes for children with asthma. Thorax 72(4), 347–354 (2017). https://doi.org/10.1136/thoraxjnl-2015-208171. https://thorax.bmj.com/content/72/4/347

  41. Mygdalis, V., Iosifidis, A., Tefas, A., Pitas, I.: One class classification applied in facial image analysis. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1644–1648 (2016)

    Google Scholar 

  42. Perera, P., Patel, V.M.: Learning deep features for one-class classification. IEEE Trans. Image Process. 28(11), 5450–5463 (2019)

    Article  MathSciNet  Google Scholar 

  43. Piyathilaka, L., Kodagoda, S.: Human Activity Recognition for Domestic Robots, pp. 395–408. Springer International Publishing, Cham (2015)

    Google Scholar 

  44. Ren, X., Ding, W., Crouter, S.E., Mu, Y., Xie, R.: Activity recognition and intensity estimation in youth from accelerometer data aided by machine learning. Appl. Intell. 45(2), 512–529 (2016)

    Article  Google Scholar 

  45. Ribeiro, M., Gutoski, M., Lazzaretti, A.E., Lopes, H.S.: One-class classification in images and videos using a convolutional autoencoder with compact embedding. IEEE Access 8, 86520–86535 (2020)

    Article  Google Scholar 

  46. Rivera, A.R., Khan, A., Bekkouch, I.E.I., Sheikh, T.S.: Anomaly detection based on zero-shot outlier synthesis and hierarchical feature distillation. IEEE Trans. Neural Netw. Learn. Syst., 1–11 (2020). Early Access

    Google Scholar 

  47. Rodomagoulakis, I., Kardaris, N., Pitsikalis, V., Mavroudi, E., Katsamanis, A., Tsiami, A., Maragos, P.: Multimodal human action recognition in assistive human-robot interaction. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2702–2706 (2016)

    Google Scholar 

  48. Sathyanarayana, A., Ofli, F., Fernandez-Luque, L., Srivastava, J., Elmagarmid, A., Arora, T., Taheri, S.: Robust automated human activity recognition and its application to sleep research. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 495–502 (2016)

    Google Scholar 

  49. Schölkopf, B., Platt, J.C., Smola, A.J.: Kernel method for percentile feature extraction. Microsoft Research, Tech. Rep. 22 (2000)

    Google Scholar 

  50. Schrader, L., Vargas Toro, A., Konietzny, S., Rüping, S., Schäpers, B., Steinböck, M., Krewer, C., Müller, F., Güttler, J., Bock, T.: Advanced sensing and human activity recognition in early intervention and rehabilitation of elderly people. J. Population Ageing 13(2), 139–165 (2020). https://doi.org/10.1007/s12062-020-09260-z

    Article  Google Scholar 

  51. Shabbir, S., Malik, M.I., Siddiqi, I.: Offline signature verification using feature learning and one-class classification. In: C. Djeddi, Y. Kessentini, I. Siddiqi, M. Jmaiel (eds.) Pattern Recognition and Artificial Intelligence, pp. 242–254. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  52. Sun, J., Shao, J., He, C.: Abnormal event detection for video surveillance using deep one-class learning. Multimedia Tools Appl. 78(3), 3633–3647 (2019)

    Article  Google Scholar 

  53. Tang, W., Sazonov, E.S.: Highly accurate recognition of human postures and activities through classification with rejection. IEEE J. Biomed. Health Inform. 18(1), 309–315 (2014)

    Article  Google Scholar 

  54. Tian, Y., Zhang, J., Chen, L., Geng, Y., Wang, X.: Single wearable accelerometer-based human activity recognition via kernel discriminant analysis and QPSO-KELM classifier. IEEE Access 7, 109216–109227 (2019)

    Article  Google Scholar 

  55. Trabelsi, D., Mohammed, S., Chamroukhi, F., Oukhellou, L., Amirat, Y.: An unsupervised approach for automatic activity recognition based on hidden Markov model regression. IEEE Trans. Autom. Sci. Eng. 10(3), 829–835 (2013)

    Article  Google Scholar 

  56. Uslu, G., Baydere, S.: Ram: Real time activity monitoring with feature extractive training. Expert Syst. Appl. 42(21), 8052–8063 (2015)

    Article  Google Scholar 

  57. Uslu, G., Baydere, S.: On the activity detection with incomplete acceleration data using iterative KNN classifier. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 003528–003533 (2016)

    Google Scholar 

  58. Uslu, G., Baydere, S., Tekin, A., Subaşı, F.: Accelerometer based classification of elbow flexion and extension exercises. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2657–2663 (2020)

    Google Scholar 

  59. Vesa, A.V., Vlad, S., Rus, R., Antal, M., Pop, C., Anghel, I., Cioara, T., Salomie, I.: Human activity recognition using smartphone sensors and beacon-based indoor localization for ambient assisted living systems. In: 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 205–212 (2020)

    Google Scholar 

  60. Wang, A., Chen, G., Yang, J., Zhao, S., Chang, C.: A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sensors J. 16(11), 4566–4578 (2016)

    Article  Google Scholar 

  61. Wang, S., Liu, Q., Zhu, E., Porikli, F., Yin, J.: Hyperparameter selection of one-class support vector machine by self-adaptive data shifting. Pattern Recogn. 74(Supplement C), 198–211 (2018)

    Google Scholar 

  62. Witten, I.H., Frank, E., Hall, M.A.: In: Data Mining-Practical Machine Learning Tools and Techniques. Morgan Kaufmann, MA, USA (2011)

    Google Scholar 

  63. Yazdansepas, D., Niazi, A.H., Gay, J.L., Maier, F.W., Ramaswamy, L., Rasheed, K., Buman, M.P.: A multi-featured approach for wearable sensor-based human activity recognition. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI), pp. 423–431 (2016)

    Google Scholar 

  64. Zhang, C., Kuppannagari, S.R., Kannan, R., Prasanna, V.K.: Generative adversarial network for synthetic time series data generation in smart grids. In: 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6 (2018)

    Google Scholar 

  65. Zhang, Y., Cui, J., Ma, K., Chen, H., Zhang, J.: A wristband device for detecting human pulse and motion based on the internet of things. Measurement 163, 108036 (2020)

    Article  Google Scholar 

  66. Zhen-Yu He, Lian-Wen Jin: Activity recognition from acceleration data using AR model representation and SVM. In: 2008 International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2245–2250 (2008)

    Google Scholar 

  67. Zhou, Z., Yu, H., Shi, H.: Human activity recognition based on improved Bayesian convolution network to analyze health care data using wearable IoT device. IEEE Access 8, 86411–86418 (2020)

    Article  Google Scholar 

  68. Zhuang, Z., Xue, Y.: Sport-related human activity detection and recognition using a smartwatch. Sensors 19(22) (2019). https://www.mdpi.com/1424-8220/19/22/5001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Uslu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uslu, G., Unal, B., Aydın, A., Baydere, S. (2022). One-Class Classification Approach in Accelerometer-Based Remote Monitoring of Physical Activities for Healthcare Applications. In: Comito, C., Forestiero, A., Zumpano, E. (eds) Integrating Artificial Intelligence and IoT for Advanced Health Informatics. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-91181-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91181-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91180-5

  • Online ISBN: 978-3-030-91181-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics