Skip to main content

Towards Knowledge Graphs Validation Through Weighted Knowledge Sources

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2021)

Abstract

The performance of applications, such as personal assistants and search engines, relies on high-quality knowledge bases, a.k.a. Knowledge Graphs (KGs). To ensure their quality one important task is knowledge validation, which measures the degree to which statements or triples of KGs are semantically correct. KGs inevitably contain incorrect and incomplete statements, which may hinder their adoption in business applications as they are not trustworthy. In this paper, we propose and implement a Validator that computes a confidence score for every triple and instance in KGs. The computed score is based on finding the same instances across different weighted knowledge sources and comparing their features. We evaluate our approach by comparing its results against a baseline validation. Our results suggest that we can validate KGs with an f-measure of at least 75%. Time-wise, the Validator, performed a validation of 2530 instances in 15 min approximately. Furthermore, we give insights and directions toward a better architecture to tackle KG validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://schema.org/.

  2. 2.

    https://github.com/DeFacto/DeFacto.

  3. 3.

    https://github.com/dice-group/Leopard.

  4. 4.

    https://github.com/dice-group/FactCheck.

  5. 5.

    http://qweb.cs.aau.dk/factify/.

  6. 6.

    https://github.com/sheffieldnlp/fever-naacl-2018.

  7. 7.

    https://github.com/DeFacto/FactBench.

  8. 8.

    https://www.w3.org/TR/turtle/.

  9. 9.

    Domain Specification are design patterns for annotating data based on Schema.org. This process implies to remove types and properties from Schema.org, or add types and properties defined in an external extension of Schema.org.

  10. 10.

    Schema alignment is the task of determining the correspondences between various schemas.

  11. 11.

    To define weights, a proper quality analysis of the knowledge sources must be carried out [8]. It may assist users in defining degrees of importance for each knowledge source.

  12. 12.

    The default threshold is defined to 0.5.

  13. 13.

    https://github.com/AmarTauqeer/graph-validation.

  14. 14.

    https://developer.mozilla.org/en-US/docs/Web/JavaScript.

  15. 15.

    https://getbootstrap.com/.

  16. 16.

    https://graphdb.sti2.at/sparql.

  17. 17.

    https://github.com/AmarTauqeer/graph-validation/tree/master/data.

  18. 18.

    https://developers.google.com/maps/documentation/places/.

  19. 19.

    https://www.openstreetmap.org/.

  20. 20.

    https://yandex.com/dev/maps/.

  21. 21.

    https://tarql.github.io/.

  22. 22.

    https://dbpedia.org/page/Juan_Carlos_I.

References

  1. Aletras, N., Stevenson, M.: Evaluating topic coherence using distributional semantics. In: Proceedings of the 10th International Conference on Computational Semantics, (IWCS2013), Potsdam, Germany, 19–22 March 2013, pp. 13–22. The Association for Computer Linguistics (2013)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

  3. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM International Conference on Management of Data (SIGMOD2008), Vancouver, Canada, 09–12 June 2008, pp. 1247–1250. ACM (2008)

    Google Scholar 

  4. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of the 24th Conference on Artificial Intelligence (AAAI2010), Atlanta, Georgia, 11–15 July 2010, pp. 1306–1313. AAAI Press (2010)

    Google Scholar 

  5. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining (KDD2014), New York, USA, 24–27 August 2014, pp. 601–610. ACM (2014)

    Google Scholar 

  6. Dong, X.L., Srivastava, D.: Big Data Integration. Synthesis Lectures on Data Management, Morgan & Claypool Publishers (2015)

    Google Scholar 

  7. Ercan, G., Elbassuoni, S., Hose, K.: Retrieving textual evidence for knowledge graph facts. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 52–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_4

    Chapter  Google Scholar 

  8. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018)

    Article  Google Scholar 

  9. Fensel, D., et al.: Knowledge Graphs - Methodology, Tools and Selected Use Cases. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37439-6

  10. Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Tracy: tracing facts over knowledge graphs and text. In: Proceedings of the 19th World Wide Web Conference (WWW2019), San Francisco, USA, 13–17 May 2019, pp. 3516–3520. ACM (2019)

    Google Scholar 

  11. Gerber, D., Esteves, D., Lehmann, J., Bühmann, L., Usbeck, R., Ngomo, A.N., Speck, R.: DeFacto - temporal and multilingual deep fact validation. J. Web Semant. 35, 85–101 (2015)

    Article  Google Scholar 

  12. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 71:1–71:37 (2021)

    Google Scholar 

  13. Huaman, E., Kärle, E., Fensel, D.: Knowledge graph validation. CoRR abs/2005.01389 (2020)

    Google Scholar 

  14. Kärle, E., Fensel, A., Toma, I., Fensel, D.: Why are there more hotels in Tyrol than in Austria? Analyzing schema.org usage in the hotel domain. In: Inversini, A., Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016, pp. 99–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28231-2_8

    Chapter  Google Scholar 

  15. Lehmann, J., Gerber, D., Morsey, M., Ngonga Ngomo, A.-C.: DeFacto - deep fact validation. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 312–327. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_20

    Chapter  Google Scholar 

  16. Liu, S., d’Aquin, M., Motta, E.: Towards linked data fact validation through measuring consensus. In: Proceedings of the 2nd Workshop on Linked Data Quality co-located with 12th Extended Semantic Web Conference (ESWC2015), Portorož, Slovenia, 1 June 2015. CEUR Workshop Proceedings, vol. 1376. CEUR-WS.org (2015)

    Google Scholar 

  17. Nakamura, S., et al.: Trustworthiness analysis of web search results. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 38–49. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74851-9_4

    Chapter  Google Scholar 

  18. Padia, A., Ferraro, F., Finin, T.: SURFACE: semantically rich fact validation with explanations. CoRR abs/1810.13223 (2018)

    Google Scholar 

  19. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  20. Rula, A., et al.: TISCO: temporal scoping of facts. J. Web Semant. 54, 72–86 (2019)

    Article  Google Scholar 

  21. Şimşek, U., Angele, K., Kärle, E., Panasiuk, O., Fensel, D.: Domain-specific customization of schema.org based on SHACL. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 585–600. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_36

    Chapter  Google Scholar 

  22. Speck, R., Ngomo, A.N.: Leopard - a baseline approach to attribute prediction and validation for knowledge graph population. J. Web Semant. 55, 102–107 (2019)

    Article  Google Scholar 

  23. Syed, Z.H., Röder, M., Ngomo, A.N.: FactCheck: validating RDF triples using textual evidence. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, (CIKM2018), Torino, Italy, 22–26 October 2018, pp. 1599–1602. ACM (2018)

    Google Scholar 

  24. Tan, C.H., Agichtein, E., Ipeirotis, P., Gabrilovich, E.: Trust, but verify: predicting contribution quality for knowledge base construction and curation. In: Seventh ACM International Conference on Web Search and Data Mining, WSDM 2014, New York, NY, USA, 24–28 February 2014, pp. 553–562. ACM (2014)

    Google Scholar 

  25. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and verification. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT2018), New Orleans, USA, 1–6 June 2018, pp. 809–819. Association for Computational Linguistics (2018)

    Google Scholar 

  26. Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Proceedings of the Workshop on Language Technologies and Computational Social Science (ACL2014), Baltimore, USA, 26 June 2014, pp. 18–22. Association for Computational Linguistics (2014)

    Google Scholar 

  27. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information providers on the web. IEEE Trans. Knowl. Data Eng. 20(6), 796–808 (2008)

    Article  Google Scholar 

  28. Yu, A.Z., Ronen, S., Hu, K., Lu, T., Hidalgo, C.A.: Pantheon 1.0, a manually verified dataset of globally famous biographies. Sci. Data 3(1), 1–16 (2016)

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the project WordLiftNG within the Eureka, Eurostars Programme of the European Union (grant agreement number 877857 with the Austrian Research Promotion Agency (FFG)) and the industrial research project MindLab (https://mindlab.ai/). We would like to thank Prof. Dr. Dieter Fensel for his insightful comments regarding the definition of the overall validation approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elwin Huaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huaman, E., Tauqeer, A., Fensel, A. (2021). Towards Knowledge Graphs Validation Through Weighted Knowledge Sources. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F., Tiwari, S., Goyal, A., Jabbar, M. (eds) Knowledge Graphs and Semantic Web. KGSWC 2021. Communications in Computer and Information Science, vol 1459. Springer, Cham. https://doi.org/10.1007/978-3-030-91305-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91305-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91304-5

  • Online ISBN: 978-3-030-91305-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics