Skip to main content

Using Monodromy to Statistically Estimate the Number of Solutions

  • Conference paper
  • First Online:
2nd IMA Conference on Mathematics of Robotics (IMA 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 21))

Included in the following conference series:

  • 302 Accesses

Abstract

Synthesis problems for linkages in kinematics often yield large structured parameterized polynomial systems which generically have far fewer solutions than traditional upper bounds would suggest. This paper describes statistical models for estimating the generic number of solutions of such parameterized polynomial systems. The new approach extends previous work on success ratios of parameter homotopies to using monodromy loops as well as the addition of a trace test that provides a stopping criterion for validating that all solutions have been found. Several examples are presented demonstrating the method including Watt I six-bar motion generation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, H.: Über die erzeugung gegebener ebener kurven mit hilfe des gelenkvierecks. ZAMM 3(1), 13–19 (1923)

    Article  Google Scholar 

  2. Baskar, A., Bandyopadhyay, S.: An algorithm to compute the finite roots of large systems of polynomial equations arising in kinematic synthesis. Mech. Mach. Theor. 133, 493–513 (2019)

    Article  Google Scholar 

  3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry. bertini.nd.edu

  4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  5. Bliss, N., Duff, T., Leykin, A., Sommars, J.: Monodromy solver: sequential and parallel. In: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, pp. 87–94. Association for Computing Machinery (2018)

    Google Scholar 

  6. Brake, D.A., Hauenstein, J.D., Liddell, A.C.: Decomposing solution sets of polynomial systems using derivatives. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 127–135. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_16

    Chapter  Google Scholar 

  7. Chapman, D.G.: Some properties of the hypergeometric distribution with applications to zoological sample censuses. Univ. California Publ. Stat. 1(7), 131–159 (1951)

    MathSciNet  MATH  Google Scholar 

  8. Duff, T., Hill, C., Jensen, A., Lee, K., Leykin, A., Sommars, J.: Solving polynomial systems via homotopy continuation and monodromy. IMA J. Numer. Anal. 39(3), 1421–1446 (2018)

    Article  MathSciNet  Google Scholar 

  9. Erdman, A.G., Sandor, G.N., Kota, S.: Mechanism Design: Analysis and Synthesis, 4th edn. Prentice Hall, Englewood Cliffs, N.J. (2001)

    Google Scholar 

  10. Glabe, J., McCarthy, J.M.: Six-Bar linkage design system with a parallelized polynomial homotopy solver. In: Lenarcic, J., Parenti-Castelli, V. (eds.) ARK 2018. SPAR, vol. 8, pp. 133–140. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93188-3_16

    Chapter  Google Scholar 

  11. Hauenstein, J.D., Haywood, I., Liddell Jr., A.C.: An a posteriori certification algorithm for Newton homotopies. In: ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 248–255. ACM, New York (2014)

    Google Scholar 

  12. Hauenstein, J.D., Oeding, L., Ottaviani, G., Sommese, A.J.: Homotopy techniques for tensor decomposition and perfect identifiability. J. für die reine und angewandte Mathematik 2019(753), 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hauenstein, J.D., Rodriguez, J.I.: Multiprojective witness sets and a trace test. Adv. Geometry 20(3), 297–318 (2020)

    Article  MathSciNet  Google Scholar 

  14. Hauenstein, J.D., Rodriguez, J.I., Sottile, F.: Numerical computation of Galois groups. Found. Comput. Math. 18, 867–890 (2018)

    Article  MathSciNet  Google Scholar 

  15. Hauenstein, J.D., Wampler, C.W., Pfurner, M.: Synthesis of three-revolute spatial chains for body guidance. Mech. Mach. Theor. 110, 61–72 (2017)

    Article  Google Scholar 

  16. Leykin, A., Rodriguez, J.I., Sottile, F.: Trace test. Arnold Math. J. 4, 113–125 (2018)

    Article  MathSciNet  Google Scholar 

  17. McCarthy, J.M., Soh, G.S.: Geometric Design of Linkages, 2nd edn. Springer, New York (2001). https://doi.org/10.1007/b98861

    Book  MATH  Google Scholar 

  18. Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Plecnik, M., Fearing, R.: Finding only finite roots to large kinematic synthesis systems. J. Mech. Robot. 9(2), 021005 (2017)

    Article  Google Scholar 

  20. Plecnik, M., McCarthy, J.M., Wampler, C.W.: Kinematic synthesis of a Watt I Six-Bar linkage for body guidance. In: Lenarčič, J., Khatib, O. (eds.) Advances in Robot Kinematics, pp. 317–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06698-1_33

    Chapter  Google Scholar 

  21. Pollock, K., Nichols, J., Brownie, C., Hines, J.: Statistical inference for capture-recapture experiments. Wildlife Monographs 107, 3–97 (1990)

    Google Scholar 

  22. Seber, G.: The Estimation of Animal Abundance and Related Parameters. C. Griffin & Co., London (1982)

    MATH  Google Scholar 

  23. Sherman, S.N., Hauenstein, J.D., Wampler, C.W.: Curve cognate constructions made easy. In: Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 10: 44th Mechanisms and Robotics Conference, V010T10A024. ASME (2020)

    Google Scholar 

  24. Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose solution sets of polynomial systems into irreducible components. In: Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat), NATO Science Series II Mathematics Physical and Chemical, vol. 36, pp. 297–315. Kluwer Academy Publications, Dordrecht (2001)

    Google Scholar 

  25. Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6), 2026–2046 (2002)

    Article  MathSciNet  Google Scholar 

  26. Sommese, A.J., Wampler, C.W.: The Numerical Solutions of Systems of Polynomials Arising in Science and Engineering. World Scientific Publishing Co. Pte. Lts., Hackensack, NJ (2005)

    Google Scholar 

  27. Wampler, C.W., Morgan, A.P., Sommese, A.J.: Complete solution of the 9-point path synthesis problem for 4-bar linkages. J. Mech. Des. 114, 153–159 (1992)

    Article  Google Scholar 

  28. Wampler, C.W., Sommese, A.J.: Numerical algebraic geometry and algebraic kinematics. Acta Numer. 20, 469–567 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Hauenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hauenstein, J.D., Sherman, S.N. (2022). Using Monodromy to Statistically Estimate the Number of Solutions. In: Holderbaum, W., Selig, J.M. (eds) 2nd IMA Conference on Mathematics of Robotics. IMA 2020. Springer Proceedings in Advanced Robotics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-91352-6_4

Download citation

Publish with us

Policies and ethics