Abstract
Synthesis problems for linkages in kinematics often yield large structured parameterized polynomial systems which generically have far fewer solutions than traditional upper bounds would suggest. This paper describes statistical models for estimating the generic number of solutions of such parameterized polynomial systems. The new approach extends previous work on success ratios of parameter homotopies to using monodromy loops as well as the addition of a trace test that provides a stopping criterion for validating that all solutions have been found. Several examples are presented demonstrating the method including Watt I six-bar motion generation problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alt, H.: Über die erzeugung gegebener ebener kurven mit hilfe des gelenkvierecks. ZAMM 3(1), 13–19 (1923)
Baskar, A., Bandyopadhyay, S.: An algorithm to compute the finite roots of large systems of polynomial equations arising in kinematic synthesis. Mech. Mach. Theor. 133, 493–513 (2019)
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry. bertini.nd.edu
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. Society for Industrial and Applied Mathematics (2013)
Bliss, N., Duff, T., Leykin, A., Sommars, J.: Monodromy solver: sequential and parallel. In: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, pp. 87–94. Association for Computing Machinery (2018)
Brake, D.A., Hauenstein, J.D., Liddell, A.C.: Decomposing solution sets of polynomial systems using derivatives. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 127–135. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_16
Chapman, D.G.: Some properties of the hypergeometric distribution with applications to zoological sample censuses. Univ. California Publ. Stat. 1(7), 131–159 (1951)
Duff, T., Hill, C., Jensen, A., Lee, K., Leykin, A., Sommars, J.: Solving polynomial systems via homotopy continuation and monodromy. IMA J. Numer. Anal. 39(3), 1421–1446 (2018)
Erdman, A.G., Sandor, G.N., Kota, S.: Mechanism Design: Analysis and Synthesis, 4th edn. Prentice Hall, Englewood Cliffs, N.J. (2001)
Glabe, J., McCarthy, J.M.: Six-Bar linkage design system with a parallelized polynomial homotopy solver. In: Lenarcic, J., Parenti-Castelli, V. (eds.) ARK 2018. SPAR, vol. 8, pp. 133–140. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93188-3_16
Hauenstein, J.D., Haywood, I., Liddell Jr., A.C.: An a posteriori certification algorithm for Newton homotopies. In: ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 248–255. ACM, New York (2014)
Hauenstein, J.D., Oeding, L., Ottaviani, G., Sommese, A.J.: Homotopy techniques for tensor decomposition and perfect identifiability. J. für die reine und angewandte Mathematik 2019(753), 1–22 (2019)
Hauenstein, J.D., Rodriguez, J.I.: Multiprojective witness sets and a trace test. Adv. Geometry 20(3), 297–318 (2020)
Hauenstein, J.D., Rodriguez, J.I., Sottile, F.: Numerical computation of Galois groups. Found. Comput. Math. 18, 867–890 (2018)
Hauenstein, J.D., Wampler, C.W., Pfurner, M.: Synthesis of three-revolute spatial chains for body guidance. Mech. Mach. Theor. 110, 61–72 (2017)
Leykin, A., Rodriguez, J.I., Sottile, F.: Trace test. Arnold Math. J. 4, 113–125 (2018)
McCarthy, J.M., Soh, G.S.: Geometric Design of Linkages, 2nd edn. Springer, New York (2001). https://doi.org/10.1007/b98861
Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989)
Plecnik, M., Fearing, R.: Finding only finite roots to large kinematic synthesis systems. J. Mech. Robot. 9(2), 021005 (2017)
Plecnik, M., McCarthy, J.M., Wampler, C.W.: Kinematic synthesis of a Watt I Six-Bar linkage for body guidance. In: Lenarčič, J., Khatib, O. (eds.) Advances in Robot Kinematics, pp. 317–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06698-1_33
Pollock, K., Nichols, J., Brownie, C., Hines, J.: Statistical inference for capture-recapture experiments. Wildlife Monographs 107, 3–97 (1990)
Seber, G.: The Estimation of Animal Abundance and Related Parameters. C. Griffin & Co., London (1982)
Sherman, S.N., Hauenstein, J.D., Wampler, C.W.: Curve cognate constructions made easy. In: Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 10: 44th Mechanisms and Robotics Conference, V010T10A024. ASME (2020)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose solution sets of polynomial systems into irreducible components. In: Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat), NATO Science Series II Mathematics Physical and Chemical, vol. 36, pp. 297–315. Kluwer Academy Publications, Dordrecht (2001)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6), 2026–2046 (2002)
Sommese, A.J., Wampler, C.W.: The Numerical Solutions of Systems of Polynomials Arising in Science and Engineering. World Scientific Publishing Co. Pte. Lts., Hackensack, NJ (2005)
Wampler, C.W., Morgan, A.P., Sommese, A.J.: Complete solution of the 9-point path synthesis problem for 4-bar linkages. J. Mech. Des. 114, 153–159 (1992)
Wampler, C.W., Sommese, A.J.: Numerical algebraic geometry and algebraic kinematics. Acta Numer. 20, 469–567 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hauenstein, J.D., Sherman, S.N. (2022). Using Monodromy to Statistically Estimate the Number of Solutions. In: Holderbaum, W., Selig, J.M. (eds) 2nd IMA Conference on Mathematics of Robotics. IMA 2020. Springer Proceedings in Advanced Robotics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-91352-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-91352-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91351-9
Online ISBN: 978-3-030-91352-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)