Skip to main content

Bigdata-Facilitated Two-Party Authenticated Key Exchange for IoT

  • Conference paper
  • First Online:
Information Security (ISC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13118))

Included in the following conference series:

  • 1245 Accesses

Abstract

Authenticated Key Exchange (AKE) protocols, by definition, guarantee both session key secrecy and entity authentication. Informally, session key secrecy means that only the legitimate parties learn the established key and mutual authentication means that one party can assure itself the session key is actually established with the other party. Today, an important application area for AKE is Internet of Things (IoT) systems, where an IoT device runs the protocol to establish a session key with a remote server. In this paper, we identify two additional security requirements for IoT-oriented AKE, namely Key Compromise Impersonation (KCI) resilience and Server Compromise Impersonation (SCI) resilience. These properties provide an additional layer of security when the IoT device and the server get compromised respectively. Inspired by Chan et al.’s bigdata-based unilateral authentication protocol, we propose a novel AKE protocol which achieves mutual authentication, session key secrecy (including perfect forward secrecy), and the above two resilience properties. To demonstrate its practicality, we implement our protocol and show that one execution costs about 15.19 ms (or, 84.73 ms) for the IoT device and 2.44 ms (or, 12.51 ms) for the server for security parameter \(\lambda =128\) (or, \(\lambda =256\)). We finally propose an enhanced protocol to reduce the computational complexity on the end of IoT by outsourcing an exponentiation computation to the server. By instantiating the signature scheme with NIST’s round three alternate candidate Picnic, we show that one protocol execution costs about 14.44 ms (or, 58.45 ms) for the IoT device and 12.78 ms (or, 46.34 ms) for the server for security parameter \(\lambda =128\) (or, \(\lambda =256\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code is available at https://github.com/n00d1e5/Demo_Bigdata-facilitated_Two-party_AKE_for_IoT.

  2. 2.

    Source code of both schemes picnic-L1-full for 128-bit security and picnic-L5-full for 256-bit security is available at https://github.com/IAIK/Picnic.

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

    Chapter  Google Scholar 

  2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_3

    Chapter  MATH  Google Scholar 

  3. Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage model. IEEE Trans. Inf. Theory 48(6), 1668–1680 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  5. Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman key agreement protocols. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8_26

    Chapter  Google Scholar 

  6. Boyd, C., Mathuria, A., Stebila, D.: Protocols for Authentication and Key Establishment. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-58146-9

  7. Brainard, J., Juels, A., Rivest, R.L., Szydlo, M., Yung, M.: Fourth-factor authentication: somebody you know. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 168–178 (2006)

    Google Scholar 

  8. Byun, J.W.: A generic multifactor authenticated key exchange with physical unclonable function. Secur. Commun. Networks 2019 (2019)

    Google Scholar 

  9. Byun, J.W.: An efficient multi-factor authenticated key exchange with physically unclonable function. In: 2019 International Conference on Electronics, Information, and Communication (ICEIC), pp. 1–4. IEEE (2019)

    Google Scholar 

  10. Byun, J.W.: End-to-end authenticated key exchange based on different physical unclonable functions. IEEE Access 7, 102951–102965 (2019)

    Article  Google Scholar 

  11. Byun, J.W.: PDAKE: a provably secure PUF-based device authenticated key exchange in cloud setting. IEEE Access 7, 181165–181177 (2019)

    Article  Google Scholar 

  12. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  13. Challa, S., et al.: Secure signature-based authenticated key establishment scheme for future IoT applications. IEEE Access 5, 3028–3043 (2017)

    Article  Google Scholar 

  14. Chan, A.C.-F., Wong, J.W., Zhou, J., Teo, J.: Scalable two-factor authentication using historical data. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 91–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_5

    Chapter  Google Scholar 

  15. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentiation to a single server: cryptanalysis and optimal constructions. Algorithmica 83(1), 72–115 (2020). https://doi.org/10.1007/s00453-020-00750-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Dang, V.B., Farahmand, F., Andrzejczak, M., Mohajerani, K., Nguyen, D.T., Gaj, K.: Implementation and benchmarking of round 2 candidates in the NIST post-quantum cryptography standardization process using hardware and software/hardware co-design approaches. Cryptology ePrint Archive: Report 2020/795 (2020)

    Google Scholar 

  17. Davies, S.G.: Touching Big Brother: how biometric technology will fuse flesh and machine. Inf. Technol. People 7(4), 38–47 (1994)

    Article  Google Scholar 

  18. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols in the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_12

    Chapter  Google Scholar 

  19. Dziembowski, S.: Intrusion-Resilience via the bounded-storage model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_11

    Chapter  Google Scholar 

  20. Fleischhacker, N., Manulis, M., Azodi, A.: A modular framework for multi-factor authentication and key exchange. In: Chen, L., Mitchell, C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 190–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14054-4_12

    Chapter  Google Scholar 

  21. Guo, C., Chang, C.C.: Chaotic maps-based password-authenticated key agreement using smart cards. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1433–1440 (2013)

    Article  MathSciNet  Google Scholar 

  22. Hao, F., Clarke, D.: Security analysis of a multi-factor authenticated key exchange protocol. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 1–11. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_1

    Chapter  Google Scholar 

  23. Kruger, C.P., Hancke, G.P.: Benchmarking Internet of Things devices. In: 2014 12th IEEE International Conference on Industrial Informatics (INDIN), pp. 611–616. IEEE (2014)

    Google Scholar 

  24. Krylovskiy, A.: Internet of things gateways meet linux containers: performance evaluation and discussion. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 222–227. IEEE (2015)

    Google Scholar 

  25. Lee, Y., Kim, S., Won, D.: Enhancement of two-factor authenticated key exchange protocols in public wireless LANs. Comput. Electr. Eng. 36(1), 213–223 (2010)

    Article  Google Scholar 

  26. Li, Z., Yang, Z., Szalachowski, P., Zhou, J.: Building low-interactivity multi-factor authenticated key exchange for industrial Internet-of-Things. IEEE Internet of Things J. 8(2), 844–859 (2020)

    Article  Google Scholar 

  27. Liu, B., Tang, Q., Zhou, J.: Bigdata-facilitated Two-party Authenticated Key Exchange for IoT (full paper) (2021). https://eprint.iacr.org/2021/1131. Accessed 10 Sept 2021

  28. Liu, Yu., Xue, K.: An improved secure and efficient password and chaos-based two-party key agreement protocol. Nonlinear Dyn. 84(2), 549–557 (2015). https://doi.org/10.1007/s11071-015-2506-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Microsoft: The Picnic Signature Algorithm. https://github.com/microsoft/Picnic/

  30. MIRACL Ltd.: Multiprecision Integer and Rational Arithmetic Cryptographic Library – the MIRACL Crypto SDK (2019). https://github.com/miracl/MIRACL

  31. Pointcheval, D., Zimmer, S.: Multi-factor authenticated key exchange. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 277–295. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_17

    Chapter  Google Scholar 

  32. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint Archive, Report 1999/012 (1999). https://eprint.iacr.org/1999/012

  33. Standards for Efficient Cryptography (SEC): SEC 2: Recommended elliptic curve domain parameters (2000)

    Google Scholar 

  34. Stebila, D., Udupi, P., Chang Shantz, S.: Multi-factor password-authenticated key exchange. Inf. Secur. 2010, 56–66 (2010)

    Google Scholar 

Download references

Acknowledgement

This paper is supported in the context of the project CATALYST funded by Fonds National de la Recherche Luxembourg (FNR, reference 12186579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Tang, Q., Zhou, J. (2021). Bigdata-Facilitated Two-Party Authenticated Key Exchange for IoT. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds) Information Security. ISC 2021. Lecture Notes in Computer Science(), vol 13118. Springer, Cham. https://doi.org/10.1007/978-3-030-91356-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91356-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91355-7

  • Online ISBN: 978-3-030-91356-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics