Skip to main content

Pesticide Label Detection Using Bounding Prediction-Based Deep Convolutional Networks

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13076))

Included in the following conference series:

  • 977 Accesses

Abstract

The paper addresses the un-explored scenario in intelligent agriculture and computer science, e.g., pesticide label detection. The problem opens to an exciting challenge in image recognition where the deployed system heavily depends on the performance of machine learning models despite unconstrained environments. To build up the system, the authors collect a real-world dataset to evaluate several state-of-the-art object detection algorithms. The authors select a dataset of 1221 photos containing 32 common pesticides on mango trees. Then we evaluate off-the-shelf deep convolutional networks to detect pesticide labels and take into account the detection accuracy. Finally, we integrate the best model into our self-developed mobile application that (i) correctly detects pesticide labels online and offline and (ii) provides essential pesticide information to facilitate further integrated treatment and services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/tzutalin/labelImg.

References

  1. Vietnam is the 13th biggest mango producer in the world. https://www.mard.gov.vn/en/Pages/vietnam-is-the-13th-biggest-mango-producer-in-the-world.aspx

  2. Agarwal, S., Terrail, J.O.D., Jurie, F.: Recent advances in object detection in the age of deep convolutional neural networks. arXiv preprint arXiv:1809.03193 (2018)

  3. Duong-Trung, N., Quach, L.D., Nguyen, C.N.: Learning deep transferability for several agricultural classification problems. Int. J. Adv. Comput. Sci. Appl. 10(1) (2019)

    Google Scholar 

  4. Duong-Trung, N., Quach, L.D., Nguyen, M.H., Nguyen, C.N.: Classification of grain discoloration via transfer learning and convolutional neural networks. In: Proceedings of the 3rd International Conference on Machine Learning and Soft Computing, pp. 27–32 (2019)

    Google Scholar 

  5. Duong-Trung, N., Quach, L.D., Nguyen, M.H., Nguyen, C.N.: A combination of transfer learning and deep learning for medicinal plant classification. In: Proceedings of the 2019 4th International Conference on Intelligent Information Technology, pp. 83–90 (2019)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Kumar, S., Mankame, D.P.: Optimization driven deep convolution neural network for brain tumor classification. Biocybern. Biomed. Eng. 40(3), 1190–1204 (2020)

    Article  Google Scholar 

  8. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  9. Liu, G., Nouaze, J.C., Touko Mbouembe, P.L., Kim, J.H.: YOLO-tomato: a robust algorithm for tomato detection based on YOLOv3. Sensors 20(7), 2145 (2020)

    Article  Google Scholar 

  10. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  11. Nguyen, M.N.: Topic: agriculture in Vietnam. https://www.statista.com/topics/5653/agriculture-in-vietnam/

  12. Ploetz, R.: The major diseases of mango: strategies and potential for sustainable management. In: VII International Mango Symposium, vol. 645, pp. 137–150 (2002)

    Google Scholar 

  13. Rajmohan, K., Chandrasekaran, R., Varjani, S.: A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J. Microbiol. 60(2), 125–138 (2020). https://doi.org/10.1007/s12088-019-00841-x

    Article  Google Scholar 

  14. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  16. Smys, S., Chen, J.I.Z., Shakya, S.: Survey on neural network architectures with deep learning. J. Soft Comput. Paradigm (JSCP) 2(03), 186–194 (2020)

    Article  Google Scholar 

  17. Srisookkum, T., Sapbamrer, R.: Health symptoms and health literacy of pesticides used among Thai cornfield farmers. Iran. J. Public Health 49(11), 2095 (2020)

    Google Scholar 

  18. Tran, A.C., Thoa, P.K., Tran, N.C., Duong-Trung, N., et al.: Real-time recognition of medicinal plant leaves using bounding-box based models. In: 2020 International Conference on Advanced Computing and Applications (ACOMP), pp. 34–41. IEEE (2020)

    Google Scholar 

  19. Tran, A.C., Tran, N.C., Duong-Trung, N.: Recognition and quantity estimation of pastry images using pre-training deep convolutional networks. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds.) FDSE 2020. CCIS, vol. 1306, pp. 200–214. Springer, Singapore (2020). https://doi.org/10.1007/978-981-33-4370-2_15

    Chapter  Google Scholar 

  20. Traore, B.B., Kamsu-Foguem, B., Tangara, F.: Deep convolution neural network for image recognition. Eco. Inform. 48, 257–268 (2018)

    Article  Google Scholar 

  21. Zhai, S., Shang, D., Wang, S., Dong, S.: DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access 8, 24344–24357 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An C. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, A.C., Nguyen, H.T., Huu, V.L.N., Duong-Trung, N. (2021). Pesticide Label Detection Using Bounding Prediction-Based Deep Convolutional Networks. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91387-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91386-1

  • Online ISBN: 978-3-030-91387-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics